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The Carbon Code: Decoding AI’s Role 
in Climate Mitigation

Vasiliki G. Vrana and Subhra R. Mondal

1 � Introduction

The climate crisis is the defining issue of our time. Growing global temperatures, 
melting ice caps, and an uptick in extreme weather events have forced humanity to 
respond to an existential imperative: to radically curtail greenhouse gas emissions 
while adapting to climate change’s irreversible effects on our environment. Classic 
forms of climate mitigation—such as policy reform, renewable energy adoption, 
and behavioral change—remain essential but are inadequate. Here comes artificial 
intelligence (AI), a technology with the transformative power to accelerate and 
improve our response to this crisis (Borgia et al., 2024). This chapter, “The Carbon 
Code: Deciphering the AI Code of Climate Mitigation,” also explores the opportuni-
ties presented by AI technologies that are already redefining climate action, both as 
a theoretical framework and as an applied guide to how machine learning, neural 
networks, and data-driven strategies could be used to combat planetary warming 
(Das, 2020).
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1.1 � The Climate Imperatives and the Emergence of AI

Climate change is a hypercomplex problem involving interlocking, atmospheric, 
oceanic, ecological, and human systems, making for a terrible modeling challenge. 
The Intergovernmental Panel on Climate Change (IPCC) emphasizes the need to 
rapidly decarbonize all parts of our economy to limit warming to 1.5 °C, an end-
point requiring extraordinary innovation levels. Here, AI comes forth not as a cure-
all but a magnifier of human ingenuity. Its ability to process massive datasets, detect 
hidden patterns, and refine choices in real time makes it uniquely suited to meet the 
scale and urgency of the climate challenge.

AI at its core operates as a decoder of complexity (Das, 2023). The satellites, 
sensors, and simulations driving climate systems churn out exabytes of data, strain-
ing traditional analytical techniques (Das et  al., 2024a). However, this flood of 
information is a boon for machine learning (ML) algorithms, which harness it to 
distill insights that drive predictive models and strategic interventions (Das et al., 
2024b). For instance, neural networks trained on past climate data can better predict 
future warming scenarios, while reinforcement learning agents increasingly opti-
mize energy grids based on renewables (Das et al., 2023). The “carbon code” is a 
term that conveys the delicate balance of human activity, emissions, and overall 
planetary health and this synergy of computational power and environmental sci-
ence underlies it—an advance on the model not just of human activity but amounts 
of knowledge.

1.2 � Theoretical Foundations: AI as Systems Thinker

The theoretical foundations of AI use in climate mitigation rely on complex systems 
analysis and adaptive learning (Di Virgilio & Das, 2023a). Climate change is a 
prime example of a complex system, where local changes (e.g., deforestation) prop-
agate to have global effects (e.g., changed rainfall patterns). Such nonlinearities are 
challenging for traditional linear models to capture, but AI is adept at it. Deep learn-
ing architectures, including convolutional neural networks (CNNs), enable spatial-
temporal data analysis, such as satellite imagery of deforestation or ocean currents, 
to better model feedback loops and tipping points (Di Virgilio & Das, 2023b).

AI’s capacity to interweave micro- and macro-scale analyses is a key theoretical 
insight. For example, high-temporal or granular data from smart meters in homes 
can correlate (to city scale) to energy consumption patterns that drive utility-wide 
demand-response algorithms. This scaling shows how AI helps translate single 
actions into systems-wide effects, one of the key ideas behind the carbon code 
framework (Majerova & Das, 2023a).

However, the theoretical potential of AI relies on coupling it with domain-
specific knowledge. Climate science gives the guardrails: AI the accelerant 
(Majerova & Das, 2023b). Hybrid models that combine physics-based equations 
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with ML, such as climate emulators that reduce the computational cost of Earth 
system models, serve as prominent examples of this form of symbiosis (Mondal, 
2020). Moreover, that sort of interdisciplinary fusion is essential, the chapter argues, 
for robust, actionable solutions.

1.3 � More Practical Frameworks: From Data to Deployment

Making the jump from theory to practice requires implementing AI tools in three 
areas: monitoring, prediction, and optimization.

	(a)	 Tracking emissions and ecosystems.

AI-powered platforms use satellite data and machine learning (ML) to make 
global emissions more transparent in real time, exposing elusive sources such as 
methane leaks (Mondal et al., 2024). AI-fuelled remote sensing also observes illegal 
logging or coral reef bleaching, allowing preventative conservation measures to be 
taken (Mondal et al., 2023a, b). These tools make climate intelligence accessible to 
policymakers and activists alike.

	(b)	 Foreseeing changes in the environment.

Neural networks contribute to climate forecasting, assimilating disparate data—
ocean temperatures, wind patterns, and aerosol concentrations—into high-resolution 
projections (Mondal & Das, 2023a). Startups lean on ML to forecast asset-level 
climate risks, including prone infrastructure and drought-vulnerable crops. Such 
forecasts guide adaptive strategies, from urban planning to insurance pricing 
(Mondal & Das, 2023b).

	(c)	 Optimizing carbon reduction.

Reinforcement learning (RL) algorithms play a role in shaping energy systems. 
Google’s DeepMind, for example, lowered data center cooling costs by 40% via 
efficiency gains from RL. On a global scale, AI fine-tunes wind farm placement, 
balances smart grid loads, and devises carbon-capturing materials (Mondal & Das, 
2023c). These applications highlight AI’s use as a force multiplier for technologies 
we already have.

1.4 � Frontiers of Research and Collaborative Work

The chapter distills groundbreaking efforts from organizations such as MIT’s 
ClimateML, Stanford’s AI for Climate Initiative, and the Allen Institute for AI that 
prioritize open-source infrastructures for climate resilience. Key innovations 
include:

The Carbon Code: Decoding AI’s Role in Climate Mitigation
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	a.	 Physics-informed ML: Employing the laws of thermodynamics within ML neu-
ronets for augmented climate model fidelity.

	b.	 Generative AI: Generative adversarial networks (GANs) can be used to create 
low-carbon materials or synthetic fuels (Mondal et al., 2022).

	c.	 Ethical AI frameworks: Building a world where algorithms target equity in cli-
mate policies, rather than marginalizing vulnerable communities.

Yet challenges persist. Data gaps in the Global South constrain model generaliz-
ability, and training large AI models carries carbon footprints that challenge the net 
benefits of clean energy (Mondal et  al., 2023a, b). One thing to do would be to 
implement federated learning (decentralized data analysis) and adhere to green AI 
practices, like implementing energy-efficient algorithms. As this is a collaborative 
codebreak, there are no definitive answers and multiple interpretations of the clues 
(S. Mondal & Sahoo, 2019).

Uncovering the carbon code requires collaboration across disciplines. To address 
the climate crisis, climate scientists, AI researchers, policymakers, and ethicists 
must collaborate on co-creating effective and equitable solutions (Nadanyiova & 
Das, 2020). Programs such as the EU’s Destination Earth and the AI for Good 
Global Consortium illustrate this philosophy by coupling technical ambition with 
planetary stewardship (Yegen & Das, 2023).

This chapter assumes that AI represents not just a tool but a paradigm shift in 
climate action, as a tool to navigate complexity with speed and precision (Tandon & 
Das, 2023). Only by combining theoretical rigor with practical inventiveness can we 
exploit AI as the technology that rewrites the carbon code and the path that leads 
humanity to a sustainable future. It is a journey with many technical and ethical 
challenges, but the stakes are unmistakably high. At this crossroads of technological 
innovation and ecological survival, decoding AI’s role is no longer an academic 
pursuit but a moral necessity (Vrana & Das, 2023b). The authors have chosen to 
explore the technological fabric of AI-driven climate solutions to provide readers 
with a compass for navigating these transformative issues.

2 � Literature Review: Determinants of AI’s Role 
in Climate Mitigation

AI and climate mitigation are crucial interdisciplinary research frontiers. This body 
of academic literature reviews the scholarly literature on the technological, ethical, 
and systemic considerations regarding AI’s capacity to help address climate change 
in data analysis, predictive modeling, and optimization. This chapter uses a review 
of peer-reviewed studies, policy reports, and technical frameworks to reframe the 
opportunities, challenges, and gaps in the evolving nexus of AI and climate action.

V. G. Vrana and S. R. Mondal
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2.1 � Using AI to Monitor Climate Data and Track Emissions

AI is generally used to process large heterogeneous datasets, monitor environmental 
changes, and quantify emissions (Vrana & Das, 2023a). AI’s transformative power 
in climate science was spotlighted by Rolnick et al. (2022), as ML algorithms pro-
cess satellite images, IoT sensor networks, and atmospheric data to identify, e.g., 
deforestation, methane leaks, and urban heat islands. One such effort is conducted 
by Kiranyaz et  al. (2020), which monitors live global emissions from industrial 
facilities using convolutional neural networks (CNNs), and which is adapted to 
address the shortcomings of self-reported national inventories. They demonstrate 
how AI democratizes climate accountability by enabling transparency and action-
ability of emissions data.

Hybrid models that pair AI with domain-specific physics have also increased 
monitoring accuracy (Schweidtmann et al., 2023). Kochkov et al. (2024) trained a 
neural network on climate simulation data to predict cloud cover dynamics, a key 
variable that needs to be predicted to predict solar energy. Similarly, Jarrahi et al. 
(2022) called for “hybrid AI” frameworks that integrate physical laws (e.g., fluid 
dynamics) into ML architectures that increase interpretability of outputs for policy-
makers. These studies also note that AI can assist in filling the observational gaps, 
particularly in the regions where no or very few ground-based monitoring infra-
structures exist.

Shumailov et al. (2024) show how AI models trained on Global North datasets 
and their overreliance make systems inflexible and poorly performing models that 
do not generalize to tropical ecosystems or arid regions, thus exacerbating the biases 
in climate interventions. Their analysis emphasizes the need for decentralized data-
sharing frameworks like federated learning (Cheng et al. (2024), which aim to equip 
underrepresented regions within the current data landscape with the ability to input 
and benefit from AI-powered monitoring.

2.2 � Data-Driven Decision-Making on Climate Risk 
and Adaptation

Leveraging AI-powered projections in climate risk assessment, adaptive planning, 
and predictive analysis of extreme climate events with deep learning approaches 
like recurrent neural networks (RNNs) and transformers. CNNs trained on high-
resolution climate outperform traditional numerical models by 15–20% in the pre-
diction of hurricane trajectories (Rasp & Thuerey, 2021). According to the IPCC’s 
Sixth Assessment Report of 2022, which connects AI-enabled early warning sys-
tems to reduced mortality among climate-vulnerable populations, such advances are 
critical to disaster preparedness.

At the microeconomic scale, AI allows for fine-grained risk assessments for 
infrastructure and agriculture. The Climate Intelligence platform, studied by Eyring 

The Carbon Code: Decoding AI’s Role in Climate Mitigation
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et al. (2024), uses ML to assess asset-level exposure to floods, droughts, and sea-
level rise, informing insurance models and urban resilience pathways. 
Simultaneously, generative adversarial networks (GANs) are employed to model 
future climate scenarios (Ahmad et al., 2024). Al used GANS to collect synthetic 
data for drought prediction in areas with little data, which can help in proactive 
water management.

Despite this promise, predictive AI is challenged by skepticism around its “black-
box” nature. Rudin (2019) worked on high-stakes climate decisions that deep learn-
ing models were commonly being used to make and argued for the need of 
explainable AI (XAI) techniques such as SHAP (Shapley Additive Explanations) to 
provide transparency for such previously opaque black-box-like models. This align-
ment calls for ethical guidelines around climate predictions to make them accurate 
and interpretable for stakeholders. Much theoretical work has been done in the last 
few decades to optimize carbon reduction strategies.

AI transforms energy systems, circular economies, carbon capture, and more 
through optimization. RL (reinforcement learning) algorithms, which learn to make 
progressively better rewards-based decisions, can be potent. In a case study show-
casing AI’s industrial efficiency potential, Mukatash et  al. (2024) characterized 
Google DeepMind’s use of RL toward 40% cooling energy savings in data centers. 
Similarly, Bhardwaj et al. (2024) developed a genetic algorithm for optimizing wind 
farm layouts, achieving 12–15% greater energy output and reduced land use.

AI accelerates material discovery in carbon capture and storage (CCS). Sánchez-
Lengeling et al. (2021) employed graph neural networks (GNNs) to screen millions 
of metal-organic frameworks (MOFs) for CO2 adsorption, flagging candidates with 
3× higher efficiency compared to conventional materials. In the meantime, genera-
tive models are creating low-carbon supply chains. Kannan et al. (2023) formulated 
an RL framework to minimize emissions across logistics networks while balancing 
cost and sustainability—a bi-objective problem previously considered intractable 
through linear programming.

Critics warned against excessive reliance on AI for more systematic decarbon-
ization. Kaack et  al. (2022) stated that optimization algorithms tend to focus on 
marginal gains (e.g., improving efficiency) rather than structural changes (e.g., 
phasing out fossil fuels). This criticism reflects broader conversations around 
“techno-solutionism” in climate policy, which cautions that AI may distract from 
political and behavioral imperatives (Sætra & Selinger, 2024).

2.3 � Issues with Ethics and Operation

The application of AI in climate mitigation presents ethical issues, primarily related 
to equity and computational sustainability. Arora et al. (2023) highlighted algorith-
mic bias as a significant issue, where for instance, energy optimisation models could 
favor affluent communities with smart grids while leaving out off-grid areas. 
Likewise, the carbon footprint of AI itself is non-negligible. Azeez (2025) estimated 
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the carbon footprint of training a large language model to 626,000 pounds of CO2. 
This paradox calls for “green AI” practices, including energy-efficient model archi-
tectures (Tabbakh et al., 2024).

Data sovereignty and governance further complicate AI’s role. The EU’s General 
Data Protection Regulation (GDPR) has conflicted with climate initiatives that 
require sharing data across borders (Hoofnagle et  al., 2019). Proposed solutions 
involve federated learning systems, where models are trained on decentralized data 
without compromising privacy (Chaudhary et al., 2024), and international agree-
ments such as the Global Climate Observing System (GCOS) to standardize data 
protocols.

2.4 � Future Directions

The literature is consensus on AI’s transformative potential but divergent on its limi-
tations. Key gaps include:

	(a)	 Regional gaps: Most AI models are trained using data from industrialized coun-
tries only, limiting their generalizability to the Global South (Arora et al., 2023).

	(b)	 Interdisciplinary collaboration: Creating practical tools to leverage certain 
aspects of AI for climate will involve closer collaboration among climate scien-
tists, ethicists, and ML engineers (Rolnick et al., 2022).

	(c)	 Beneficiaries and scope of multiple-emission integration: Currently, there are 
very few frameworks to take the AI insights into enforceable climate policies 
(Chaudhary et al., 2024).

Future research must focus on participatory AI that introduces exploited com-
munities throughout the co-designing process and low-carbon algorithms that reso-
nate with ecological objectives by maximizing computational performance.

AI’s potential to mitigate climate change depends on its ability to decipher com-
plexity, optimize systems, and democratize data. However, its prospects hit hurdles 
around ethics, technology, and geopolitics. To help ensure these tools catalyze fair, 
scalable decarbonization, researchers should ground AI in the principles of climate 
justice and promote global collaboration.

3 � Fast-Tracking AI-Powered Solutions Toward 
Climate Sustainability

Mitigating the various technical, ethical, and systemic opaque barriers to success-
fully operationalizing AI’s utility to climate action requires a structured, interdisci-
plinary approach by the community of stakeholders. Below is a five-part framework 
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for effectively deploying AI tools, informed by the literature and aimed at maximiz-
ing equity, scalability, and impact.

3.1 � Infrastructure and Accessibility of Data

	(a)	 Goal: High-quality and representative climate data is made available to all.
	(b)	 Decentralized data sharing: A federated learning system that allows training on 

distributed datasets without sharing sensitive information. For example, 
regional climate agencies in the Global South could combine satellite and sen-
sor data to improve flooding prediction models while maintaining data 
sovereignty.

	(c)	 Open-source platforms: Creating repositories to codify and share pre-processed 
climate datasets reduces duplication of effort in AI training.

	(d)	 Participatory data collection: Crowdsourcing hyperlocal environmental 
data  (like air quality and soil health) through mobile apps and engaging local 
populations, where formal institutional monitoring is absent.

	(e)	 Tool integration: Data standardization across IoT sensors for interoperability 
and integration with blockchain networks. Tools: federated learning frame-
works (TensorFlow federated).

	(f)	 Stakeholders: Government, NGOs, academics, local communities.

3.2 � Model Development and Deployment

	(a)	 Goal: Develop interpretable, physics-guided AI models that address the require-
ments of climate science.

	(b)	 Hybrid AI systems: Incorporating domain knowledge (e.g., thermodynamics, 
ecology) in ML architectures. Example: Use neural networks and fluid dynam-
ics equations to simulate ocean currents.

	(c)	 Explainable AI (XAI): Employ methods such as SHAP values or LIME to 
explain model predictions to ensure policymakers trust the models. XAI can be 
used in tools such as Climate TRACE to provide transparent audits of emissions 
sources.

	(d)	 Energy-efficient algorithms: Use energy-efficient (“green AI”) models (e.g., 
sparse neural networks) to limit computational carbon footprints.

	(e)	 Computational challenge: Getting high-quality data for training on low-power 
AI chips.

	(f)	 Stakeholder integration: AI researchers, climate scientists, tech companies.

V. G. Vrana and S. R. Mondal
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3.3 � Ethical Governance and Equity

	(a)	 Goal: Projecting climate justice principles in AI deployments.
	(b)	 Bias audits: How are AI tools contributing to equity or inequity in shaping cit-

ies? Algorithmic adjustments to listen to marginalized communities.
	(c)	 Carbon accounting: Policy that demands lifecycle assessments of AI projects, 

accounting for emissions from training until deployment. Certify tools that con-
form to Green AI.

	(d)	 Community Co-design: Collaborate with Indigenous and farmer communities 
to collaboratively design AI solutions (e.g., drought-resistant crop algorithms) 
that incorporate and respect Indigenous and farmer knowledge.

	(e)	 Tools: Equity  impact frameworks (AI Fairness 360) carbon tracking software 
(CodeCarbon).

	(f)	 Stakeholder integration: Some stakeholders are ethicists, community leaders, 
regulatory bodies, and public health experts.

3.4 � Degree of Integration of Stakeholders and Policies

	(a)	 Goal: Turn AI recommendations into legally binding public policies and market 
incentives.

	(b)	 AI-driven labs: Create interdisciplinary teams (e.g., climate scientists, econo-
mists, and ML engineers) to simulate policy outcomes accurately. For example, 
simulate carbon tax impacts with reinforcement learning.

	(c)	 Public–private partnerships: Use tax incentives to encourage corporations to 
change practices after verifying reductions in emissions from an AI-enabled 
strategy. This is a nice example of Google’s collaboration with DeepMind on 
data center cooling.

	(d)	 Make global commitments: Push for a global treaty on AI-climate cross-effects, 
like the reporting requirements of the Paris Agreement.

	(e)	 Tools: Policy simulation platforms (OpenAI Gym) and carbon markets are 
available at this level.

	(f)	 Stakeholder integration: The stakeholders are policymakers, corporations, and 
international bodies.

3.5 � Monitoring and Progressive Improvement

	(a)	 Goal: Develop ongoing assessment and improvement of AI systems.
	(b)	 Real-time dashboards: Use an AI-powered platform like Cervest Climate 

Intelligence to monitor climate risks and the efficacy of mitigation strategies, 
updating models and output as new data becomes available.

The Carbon Code: Decoding AI’s Role in Climate Mitigation
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	(c)	 Feedback loops: Citizens can provide feedback (perhaps through mobile apps) 
to improve AI predictions (e.g., safest travel routes during floods) and ensure 
that these predictions are culturally and socially relevant.

	(d)	 Adaptive regulation: Update legal frameworks to reflect AI progress, including 
requirements for retraining models as climate baselines change.

	(e)	 Tools: Internet of Things  (IoT) networks, citizen science platforms 
(Zooniverse), regulatory sandboxes.

	(f)	 Stakeholders: Policy makers, legal regulators, civil society, tech auditors.

This framework repositions AI as a flexible, ethical tool for climate mitigation, 
highlighting cross-sectoral and cross-scalar collaboration. The path to success lies 
in striking a balance between innovation and accountability regarding AI: The goal 
is to ensure AI not only cracks the carbon code, but also enables equitable, resilient 
societies. When open data, hybrid approaches, and participatory governance take 
precedence, theoretical potential becomes actualised progress. Figure 1 represents 
the AI framework for climate action.

Fig. 1  AI framework in climate action (Source: Authors’ conception)

V. G. Vrana and S. R. Mondal



11

4 � Implications of the AI-Driven Climate Mitigation 
Framework: Theoretical, Practical, Societal, 
and Sustainable

The inclusion of AI in climate mitigation approaches proposed in the framework has 
potentially transformational theoretical, pragmatic, societal, and sustainable conse-
quences. This analysis explores these dimensions, leveraging interdisciplinary 
research through the lens of opportunities, challenges, and transformative potential.

4.1 � Theoretical Implications: Crossing Complexity 
and Innovation

The framework’s focus on hybrid AI models—where machine learning (ML) is 
used in conjunction with climate science—further extends theoretical paradigms 
around systems theory and computational sustainability. As a hypercomplex sys-
tem, climate change defies reductionist modeling methods because of its nonlinear 
feedback loops and cross-scale interactions. This framework leverages physics-
informed neural networks to provide validation that AI can improve Earth system 
models (ESMs). These hybrid architectures reconcile empirical observations with 
theoretical constructs, like thermodynamic theorems, and provide a fresh perspec-
tive to decode climate dynamics.

These challenges siloed approaches to climate science and AI in theory. Rolnick 
et al. (2022) argue that the ability of AI to process “big data” from satellites, sen-
sors, and other tools makes it necessary to rethink traditional climate modeling, 
which tends to focus on physical equations over “data-driven” insights. The frame-
work’s hybrid models thus embody a paradigm shift, encouraging interdisciplinary 
collaboration and affirming the “complexity science” method of examining climate 
systems. However, it does bring into question model interpretability. Although 
built-in explainable AI (XAI) tools (SHAP values (Rudin, 2019)) claim to be an 
alternative, critics have issued harsh warnings that hybrid models may not have a 
more precise understanding of the causation and may lead users to too much causa-
tion based on correlations.

Furthermore, the framework’s decentralized data-sharing mechanisms (e.g., fed-
erated learning) are aligned with theories of epistemic justice, which foster more 
inclusive knowledge production—decentralizing data ownership against colonial 
legacies in climate science, as Northern perspectives are often favored in Global 
South contexts, reframes AI not just as a tool but a force multiplier of climate 
democratization.
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4.2 � Practical Implications: How the Systemic Barriers 
Impede Scalability

From a practical perspective, the framework provides actionable pathways to 
improve climate monitoring, prediction, and optimization. Tools such as Climate 
TRACE highlight AI’s power to democratize emissions analysis, allowing for real-
time scrutiny of corporations and governments. Likewise, Google’s DeepMind has 
proven effective at deep reinforcement learning (RL)-based energy optimization 
and has improved concrete efficiency. However, in order to build scale, infrastruc-
tural and technical barriers must be addressed.

Data inequity and computational costs are among the key challenges. Federated 
learning eliminates data silos, and in remote areas with limited electricity or Internet 
access, it will be impossible to run a robust network of IoT devices. Green AI prac-
tices, e.g., energy-efficient algorithms, are indispensable to counterbalance the car-
bon footprint of training large models. However, the framework’s effectiveness 
relies on stakeholder buy-in: policymakers must create financial incentives through 
carbon markets for organizations to adopt the technology, and corporations have 
up-front organization costs to redesign infrastructure to accommodate AI systems.

One operational risk is excessive reliance on AI for decision-making. As for the 
RL that facilitates wind farm layouts, human judgment will always be required to 
sort out ethical trade-offs, such as land-use conflicts with Indigenous peoples. The 
framework’s concept of “policy labs” could help fill this gap by embedding interdis-
ciplinary teams into governance structures to ensure that AI enhances—rather than 
replaces—human judgment.

4.3 � Social Implications: Equity, Power, and Participation

Socially, the framework’s participatory ethos—reinforced through community co-
design processes and bias audits—champions climate justice but fights entrenched 
power dynamics. When it is filled with people from marginalized communities with 
first-hand experience of people-centric solutions, such as predicting droughts among 
smallholder farmers, it counters technocratic discourse favoring Global North-
based Sources. Crowdsourced air quality monitoring, for example, enables citizens 
to become data producers and fosters grassroots climate change action.

However, there remains a possibility of algorithmic bias. This is especially 
important in AI decision-making in areas like urban planning, where the data could 
reflect existing inequalities in the training data. So, flood protection would be given 
to airports, not to villages. The framework’s equity assessments are a step up, but for 
the process to be genuinely inclusive, standards that can be enforced are required. 
Furthermore, there are privacy risks, too; decentralized data systems could still 
expose vulnerable communities to surveillance by authoritarian regimes.
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It further adds AI-driven automation to potential ways to disrupt labor markets. 
Crushing all emissions on this chart out of your supply chains may move workers 
on your logistics or strength sectors. A key gap in the framework is its silence about 
just transition strategies—retraining programs for workers affected by moves to 
mitigate climate change. Social acceptance needs to be grounded in clear communi-
cation about the role of AI as a complement, not a replacement, to human labor and 
as a tool for policy change.

4.4 � Sustainable Implications: Striking a Balance Between 
Innovation and the Planetary Boundaries

The framework’s sustainable implications depend on its capacity to reconcile the 
efficiency gains of AI with ecological limits. Digitalization has excellent potential 
for GHG emissions reduction through AI-optimized renewable energy grids and 
circular supply chains. Some of these may not have been explicitly developed for 
CCS, such as graph neural networks (GNNs) speeding up the discovery of carbon 
capture materials. However, they have the potential to change CCS technologies 
completely. However, sustainability depends on two things:

Net environmental impact: While AI reduces levels in emission-heavy sectors 
like energy, its lifecycle—from data centers to hardware—must obey strict carbon 
budgets. The proposed framework addresses the need for Green AI certification to 
ensure net-positive outcomes.

Responsiveness: AI models should adapt to changing climate baselines. 
Predictive algorithms based on historical data may not work in unprecedented 
warming scenarios, so they must be constantly retrained.

If disconnected from systemic reforms—and, crucially, from the forces that sus-
tain those reforms—the framework leaves us vulnerable to a version of techno-
solutionism. As Kaack et al. (2022) caution, AI-enabled efficiency improvements in 
fossil energy extraction could paradoxically raise emissions by making fossil energy 
cheaper. Thus, AI must be regulated by policies focused on absolute decarboniza-
tion rather than relative efficiency.

The framework’s social, sustainable, theoretical, and practical implications are 
interdependent. In theory, it advances hybrid modeling and epistemic justice; in 
practice, it mediates through infrastructural and ethical trade-offs; socially, it reaps 
empowerment while containing equity risks and, sustainably, mitigates innovation 
and planetary boundaries imbalance. Federal and state governments must also 
embrace this future, adopting holistic governance that marries open science, partici-
patory design, and robust sustainability metrics to secure broad-based social equity 
and environmental advantage in the climate resilience domain. As the carbon code 
unrolls, what humanity is after is not a way to tap AI’s power, but to guide its current 
to justice and ecological integrity.
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5 � Conclusion

The debate on artificial intelligence’s (AI) role as a climate mitigation catalyst has 
a dual narrative of unprecedented opportunity and sobering challenge. With the 
global climate crisis looming, AI is not framed as the generalizable panacea, but as 
a potentially game-changing technology—if, as the authors put it, we get just the 
writing on the wall right about how we deploy it: the balancing act of innovation and 
ethics, efficiency and equity, techno-mania, and planetary scale. However, this final 
chapter draws together some of the rich threads of understanding emerging from 
this thematic exploration of theory, practice, and impact for sustainability and 
toward a better future that weaves the best technological innovation into nurturing 
human values and connections.

The means of AI’s goodness are its ability to reduce complexity. Climate systems 
are notoriously complex, with their snap-to-grid interactions between atmospheric, 
ecological, and human factors. Machine learning algorithms, neural networks, and 
predictive analytics will transform how we report emissions, manage risks, and 
optimize decarbonization strategies. From real-time global emission tracking using 
Climate TRACE to energy grid optimizations powered by reinforcement learning, 
we have already seen how AI can be leveraged to accelerate climate action. These 
breakthroughs serve to illustrate an unassailable point: The fact is that AI can comb 
vast datasets, identify trends that human analysts can overlook, and arrive at solu-
tions in speeds that no human-based approach could ever match.

However, this promise is tempered by significant limitations. The black-box 
nature of AI models, data inequities favoring the Global North, and the carbon foot-
print associated with training more extensive algorithms present ethical and opera-
tional dilemmas. For instance, although federated learning may enable data 
democratization, its practicality depends on bridging infrastructure divides among 
under-represented groups. For example, hybrid AI approaches that integrate physics-
based inputs into machine learning reduce information loss in predictive accuracy, 
but may obscure causal mechanisms motivating policy-oriented solutions as the 
predominant mode of enquiry. These challenges highlight the need for interdisci-
plinary cooperation—the urgent need to turn climate scientists, AI developers, ethi-
cists, and policymakers into co-designers of technologically robust and socially 
fair tools.

However, technology is not going to bring systemic change. AI’s role must also 
be understood regarding more significant sociopolitical dynamics. Therefore, the 
policymakers have to utilize artificial intelligence-derived insights to convert them 
into feasible mandates that can be prescriptive, such as carbon pricing systems 
derived from reinforcement learning models. Now, internationally, the world should 
establish a data protocol between countries in line with the collaborative spirit of the 
Paris Agreement and find out how to orient AI development to human-development 
goals rooted in national interests. Simultaneously, joint public–private partnerships 
will enter useful horse-whips to compel the world’s capitalists to AI-algorithm 
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fuel-economized behavior, e.g., Google/DeepMind operations around data center 
emissions.

The most crucial lesson is that the discourse warns against techno-solutionism. 
Efficiency improvements in fossil fuel extraction or marginal emissions reductions 
powered by AI threaten to distract from the critical need to phase out hydrocarbons 
completely. True sustainability means structural changes—reform of policy, tweaks 
in behavior, and adjustments in the economy—that AI can help direct through anal-
ysis. For example, while AI can optimize supply chains to achieve lower emissions, 
it must exist within systems that prioritize a circular economy and the uptake of 
renewable energy.

6 � Future Development

	(a)	 Inclusive innovation: Expand Scale AI training processes to underrepresented 
geographical areas, such as flood prediction models in places relevant to tropi-
cal and arid areas.

	(b)	 Ethical governance: Establish global transparency, accountability, and equity 
standards for AI-climate applications. International treaties can create laws 
based on these standards, while localized regulatory sandboxes can empower 
enforcement.

	(c)	 Integrate holistically: Formulate and embed AI into cross-disciplinary climate 
solutions that foster human judgment, indigenization, and policy-based action 
rather than simply augment capabilities.

To decode the “carbon code,” AI must navigate a tightrope—a complex balanc-
ing act between computational prowess and the practical constraints of society and 
ecology. The climate crisis is a collective challenge, and AI’s most significant con-
tribution could be harmonizing diverse stakeholders around data-driven solutions. 
Only through marrying innovation with empathy, precision with participation, and 
ambition with accountability can humanity convert AI from a tool into a partner to 
build a resilient, equitable, and sustainable future. The path is complex, but the 
stakes are too significant for comfort. So at this intersection of technological poten-
tial and planetary survival, the answer is painfully simple: We must deploy AI in an 
intelligent, urgent, inclusive manner for life on Earth.
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Silicon Forests: How AI Is Regreening 
the Corporate Landscape

Lukas Vartiak and Subhankar Das

1 � Introduction

Deep in the heart of an independent city alive with glass and concrete and spark of 
commerce, an unpredictable metamorphosis occurs. Boardrooms that once revolved 
around spreadsheets and profit margins are now abuzz with talk of “neural net-
works,” “carbon footprints,” and “circular economies.” The corporate world, which 
has taken its share of responsibility for harming the environment, is undergoing a 
renaissance and it is not powered by conventional stewards but by artificial intelli-
gence (Borgia et al., 2024). Such is the start of the Silicon Forest age: a harmonious 
blend of our screens and plant life, where code is the sapling of our ecosystems and 
information feeds new meadows of inordinate foliage (Das, 2020).

The urgency of climate change looms over industries. With world temperatures 
rising and ecosystems fraying, businesses are under increasing pressure from con-
sumers, investors, and regulators to transition to sustainability. However, the man-
date is not simply altruistic; it is economic. Resource scarcity, volatile energy 
markets, and changing consumer preferences have rendered “green” a strategic 
necessity. Here comes AI, the unlikely savior of the story. Once the stuff of sci-fi 
daydreams, artificial intelligence has transformed into a practical instrument, able to 
analyze enormous datasets, forecast trends, and optimize systems at speeds and 
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accuracies that outstrip human capabilities. Companies now use this tool to reduce 
costs, increase profits, and rethink their relationship with the planet.

1.1 � Artificial Intelligence and Changes in Supply Chain

Take the journey of a single T-shirt, for example. From cotton fields to dye factories, 
cargo ships to retail shelves, it is a maze of logistical decisions—each with an envi-
ronmental impact (Das, 2020). Supply chains ran on estimations or educated guesses 
for decades, not surprisingly leading to overproduction, wasted fuel, and excess 
emissions. However, in the Silicon Forest, AI is making guesswork geometric.

Consider Walmart, a retail behemoth whose supply chain connects 11,500 stores 
with 100,000 suppliers. Recently, it rolled out an AI-based platform to optimize its 
inventory and transportation networks. Tuning delivery routes, by plugging in 
weather patterns, geopolitical events, and real-time consumer behavior data, cut 
routes by 15 percent, and reduced diesel consumption by 25 million gallons a year. 
The result? A win–win: lower costs and reduced carbon emissions. Similarly, 
Maersk, the world’s biggest shipping company, has recently employed machine 
learning to forecast port congestion, changing the course of ships to prevent idling 
engines from burning heavy fuel oil. What once took brigade after brigade of ana-
lysts’ days and weeks to untangle happens in milliseconds. It proves that efficiency 
and sustainability are not the bitter enemies they were painted to be; they are 
partners.

However, the actual trailblazers are startups like Climatiq, a Berlin-based com-
pany whose AI serves as a “carbon accountant” for businesses. Through integration 
with procurement systems, each time a purchase order is placed, Climatiq’s soft-
ware automatically calculates the emissions processed by that order—for example, 
how many grams of CO₂ are associated with a box of paperclips. IKEA, for exam-
ple, has used that granular visibility to transform the nature of its engagement, 
enabling targeted reductions without compromising growth.

1.2 � Canopy of Energy Management: A Multifunctional Setup

Underneath the Silicon Forest’s trees, another revolution is bubbling up: the rebirth 
of energy. Traditional energy management was more of a dimmer switch—blunt 
and reactive. Today, AI systems serve as master orchestrators, conducting consump-
tion, storage, and generation in flawless unison.

Google’s data centers—the engines behind billions of daily searches—used to be 
voracious energy guzzlers. However, in 2016, the company partnered with 
DeepMind to develop an AI that automatically controls cooling systems based on 
real-time temperature readings, server loads, and weather forecasts. A breakthrough 
algorithm, trained on historical data, cut cooling energy usage by 40%—which 

L. Vartiak and S. Das



21

Microsoft and Amazon have since adopted. Even more surprising is the tale of Stem 
Inc., a California startup that employs AI-powered batteries to help factories and 
supermarkets shift chores to off-peak periods. Their systems analyze electricity 
price and grid demand, reducing their energy bills by as much as 30 percent while 
alleviating pressure on fossil-fuel-reliant grids.

However, the most poetic example may be the Netherlands, where tech startup 
Sympower works with wind farms. They use AI to anticipate wind patterns and 
align energy production to industrial demand. When gusts surge, the system tells 
factories to crank up energy-intensive work; when winds lull, it tones them down. 
This push and pull between industry and nature reflects the Silicon Forest philoso-
phy: do not battle the environment; embrace it.

However, real innovation comes from startups such as Climatiq, a Berlin com-
pany whose AI is a “carbon accountant” for businesses. Climatiq’s software hooks 
into procurement systems to automatically calculate the emissions for every pur-
chase order, down to the grams of CO₂ in a box of paperclips. Granular visibility of 
this kind can be transformative for corporations like IKEA, allowing for specific 
efforts at reduction without impeding growth.

1.3 � Innovation/Sustainable Design and Circular Economies

The Forest is first and foremost about creation. For much of the twentieth century, 
the product design process was linear: extract, produce, dispose. AI is curving this 
line into a circle. For instance, Adidas enlisted AI to break down and re-engineer 
materials to eliminate virgin plastics. They partnered with startup Carbon and 
designed a shoe midsole using algae-based foam. AI generated millions of molecu-
lar combos to identify one durable, flexible, and biodegradable structure—a task 
that took years but now shrinks to months. Likewise, Unilever uses generative AI to 
design packaging that minimizes material while maximizing strength. The files 
enable algorithms to explore thousands of geometric permutations, resulting in 
designs humans might never dream of. Startups like Circulor are taking this further, 
using blockchain and artificial intelligence to track raw materials from mine to 
product. For electric vehicle manufacturers like Volvo, this means conflict-free 
cobalt and recycled aluminum, closing the loop on supply chains. The AI spots real-
time discrepancies, taking sustainability from a marketing slogan to an auditable 
practice.

However, no transformation comes without some thorns. There are pitfalls for 
every success story. Data privacy is at odds with AI’s appetite for data. Algorithmic 
bias is another looming concern. When a European utility company introduced AI 
to help assign renewable energy subsidies, it unintentionally discriminated against 
low-income neighborhoods that did not have smart meters—and thus created 
inequalities.

Plus, AI’s “black-box” nature inspires skepticism. How can any organization 
claim sustainability when even its engineers do not understand how the decisions 
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are made? Companies like IBM are answering the call with offerings such as AI 
Explainability 360, but transparency is still a challenge. Cost is another barrier; 
Fortune 500 behemoths spend millions on AI services, while small businesses have 
limited access to affordable options.

Despite them, the Silicon Forest is spreading. Agriculture, fashion, construc-
tion—industries that never seemed like they would mix with tech are jumping into 
the AI sustainability game (Das, 2023). With computer vision, John Deere’s self-
driving tractors now plant seeds with precision, decreasing water and fertilizer use. 
Fashion startup Colorifix uses AI to create dyes from microbes, reducing toxic 
chemical runoff by 90 percent. Even cement, which accounts for 8% of global emis-
sions, is reimagined by companies like the Canadian startup CarbonCure, whose AI 
introduces recycled CO₂ into concrete, enhancing its strength and locking in carbon 
dioxide. Microsoft’s Planetary Computer combines environmental data and pro-
vides AI tools for everything from forestry to fisheries. Governments have also 
moved in; the EU’s “Green Digital Coalition” is financing AI projects that support 
climate goals.

The Silicon Forest lights up a new day as the old corporate paradigm dims. This 
is no utopian ideal but an incremental shift, acknowledging that profit and the planet 
do not have to be at odds. AI, for all its headaches, is a mirror: It reflects the values 
of the people who use it. The companies making money in this new landscape are 
planting algorithms like seeds, systems in which efficiency lives alongside ecology.

The journey has only just begun. It will heal, innovate, and regreen, just like 
everything we do as our AI matures (Das et al., 2024a). This ever-expanding Silicon 
Forest invites our imagination toward a future in which technology does not domi-
nate nature—technology collaborates with nature (Das et al., 2024b). Moreover, in 
that partnership lives hope: for industries, the Earth, generations to come who will 
walk under these digital-canopied trees.

2 � Literature Review: The Role of Artificial Intelligence 
in Corporate Sustainability

A connection of artificial intelligence (AI) usage in corporate sustainability devel-
opment is an important topic nowadays due to the urgency of climate change, deple-
tion of natural resources, and the need for economic sustainability (Das et al., 2023). 
This chapter reviews the existing literature to highlight how AI technologies are 
used to “regreen” industries, emphasizing applications relevant to supply chain 
optimization, energy management, sustainable product design, and the socio-ethical 
challenges of upscaling.
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2.1 � Artificial Intelligence in Supply Chain Optimization

The ability of AI to analyze massive datasets and ascertain likely outcomes has 
transformed the supply chain, cutting waste and emissions. Studies show that 
machine learning (ML) algorithms optimize logistics by predicting demand, rerout-
ing shipments, and reducing overbending (Di Virgilio & Das, 2023a). For instance, 
Modgil et al. (2021) showed that AI-powered retail supply chains reduce 18–25% of 
carbon footprints without compromising profit margins. Just as Walmart’s imple-
mentation of an AI platform to optimize its global logistics network reduced diesel 
usage by 25 million gallons each year, Toorajipour et  al. (2020) highlighted the 
overlapping advantages from cost and emissions reduction. From AI-driven carbon 
accounting systems that facilitate real-time emissions tracking of procurement deci-
sions (Adelakun et  al., 2024), startups like Climatiq have raised the bar in 
this domain.

2.2 � AI in Energy Management

Another area of focus on AI-powered sustainability is energy efficiency (Di Virgilio 
& Das, 2023b). In an example of the transfer of academic work into practice, 
DeepMind showed that by using reinforcement learning in managing data center 
cooling systems, energy consumption dropped for Google by 40%, a first in indus-
trial application (Evans & Gao, 2016). Afterward, after taking this a step further, 
Van Quaquebeke and Gerpott (2023) demonstrated how AI can balance energy grids 
by predicting variations in renewables output and demand. For example, Sympower’s 
AI platform in the Netherlands matches wind energy generation with industrial 
usage, decreasing fossil fuel dependency in low-wind periods (Zhao et al., 2022). 
This does not compensate for the energy-intensive nature of training AI unless 
renewables power these processes (Bourzac, 2024).

2.3 � Artificial Intelligence in Eco-Friendly Product Design

Circular product design is being reinvented through generative AI and materials sci-
ence (Majerova & Das, 2023a). Academic work by Akhtar et al. (2024) and Adidas’ 
biotech foam midsoles developed with startup Carbon showed that AI simulated 
various kinds of biodegradable materials. For example, Unilever’s AI-powered 
packaging designs needed 30% less plastic but offered comparable protection to 
their customers (Wheeler, 2025): a testament to how algorithms can commoditize 
creativity far better than humans. In addition, AI-based blockchain processes that 
track raw materials from extraction to production ensure ethical sourcing while 
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quelling concerns over conflict minerals and labor practices as Circulor does (Ibarra 
et al., 2024).

However, for all its potential, AI’s role in sustainability presents ethical conun-
drums (Majerova & Das, 2023b). One primary concern is algorithmic bias; Luusua 
(2022) reported deploying AI to allocate energy subsidies systematically favored 
wealthy neighborhoods, intensifying social inequities. Data privacy is still hotly 
debated, with a different controversy concerning classifying deforestation through 
satellite imagery with AI continuing to discuss the rights to use indigenous land 
(Dienlin & Breuer, 2022). Moreover, the “black box” of AI means that accountabil-
ity becomes even more complicated. IBM’s AI Explainability 360 toolkit aims to 
alleviate this with more transparent decision-making processes, but adoption has 
been slow (Von Eschenbach, 2021).

Planetary Computer collates global environmental information for AI applica-
tions, facilitating adoption of precision farming and low-carbon cement in sectors 
such as agriculture and construction (S. Mondal, 2020). Sustainable development 
goals address ecological challenges through funding and policy initiatives to pro-
mote AI innovation aligned with climate goals, such as the EU’s Green Digital 
Coalition (S. Mondal et al., 2023a, b). However, smaller businesses cannot access 
AI tools because of the expense involved, leading to a “sustainability divide” 
(Schwaeke et al., 2024). The evidence shows that AI can transform the relationship 
between profitability and planetary health (S. Mondal et al., 2024). Although suc-
cessful examples from Fortune 500 companies and startups help mitigate tangible 
successes, challenges around ethical, equity, and transparency issues remain. Future 
studies need to look into the scalability of AI solutions while considering SMEs and 
the long-term environmental effects from both an AI infrastructure standpoint and 
frameworks to ensure resources in developing countries do not get blocked 
(S. R. Mondal & Das, 2023a). As the “Silicon Forest” expands, cross-sector col-
laboration—integrating technology with policymaking and ethics—will ensure 
whether AI emerges as an integral component of sustainable development or a 
driver of unintended consequences.

3 � Framework for Embedding AI Within 
Corporate Sustainability

It involves a specific framework businesses can follow to adapt Smart and Sustainable 
AI to tackle technical, ethical, and operational challenges (S. R. Mondal & Das, 
2023b). It combines insights from cases and literature and helps companies align 
profit with planetary health.

	1.	 Strategic Alignment and Goal Setting

	 (a)	 Target: Extract, cleanse, combine, and transform business data to enable AI 
in sustainability.
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	 (b)	 Actions: Conduct a materiality assessment highlighting high-impact areas 
(e.g., energy use, waste, supply chains) where AI can effect tangible change.

	 (c)	 Set SMART goals:

•	 Example: Reduce scope 3 emissions 30% by 2030 with AI-optimized 
logistics.

•	 Align with global standards (e.g., UN SDGs, Science-Based Targets ini-
tiative) to ensure accountability.

	 (d)	 Case study: This AI-enabled supply chain (its initial cost reduction effort) 
helped Walmart commit its scope 1 and 2 emissions data to achieving SDG 
12 (Responsible Consumption) and SDG 13 (Climate Action), with emis-
sions tracking embedded in procurement decision-making.

	2.	 Data Infrastructure and Integration: Domain Transactions.

	 (a)	 Objective: Build robust data ecosystems to feed AI systems.
	 (b)	 Actions:

•	 IoT sensors and real-time monitoring obtain granular data (e.g., energy 
consumption and material waste).

•	 Cross-departmental data access through cloud systems (such as Microsoft 
Azure, Google Cloud).

•	 Data quality assurance: Clean, label, and standardize datasets to improve 
the quality of your data and prevent “garbage in, garbage out” results.

	 (c)	 Tools:

•	 An API for real-time carbon accounting from Climatiq.
•	 IBM’s Environmental Intelligence Suite to run predictive analytics.
•	 Selection and Deployment of AI Applications.

	 (d)	 Vision: We will deploy AI tools in response to priority sustainability 
challenges.

	 (e)	 Applications by sector: Fig. 1 represents AI innovations in industries.
	 (f)	 Steps for deployment:

•	 Do small-scale pilots (e.g., one factory or product line).
•	 Succeeds in successful pilots with modular AI solutions.
•	 Models must be retrained with new data to accommodate a chang-

ing world.

	3.	 Everyday Effect of AI

	 (a)	 Purpose: To ensure AI solutions that are transparent, equitable, and 
accountable.
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Fig. 1  AI innovations in industries (Source Authors’ conception)

	 (b)	 Actions:

•	 Create an AI ethics board to assess algorithms for bias, privacy invasions, 
and environmental trade-offs.
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•	 Implement explainable AI (XAI) tools (such as IBM’s AI Explainability 
360) to clarify its decision-making procedures.

•	 Stakeholder engagement: Co-create with NGOs, local communities, and 
regulators to ensure that AI use aligns with fairness ambitions.

	 (c)	 Risk mitigation checklist:

•	 Audit AI training process energy consumption (e.g., employ renewable-
powered data centers).

•	 Get independent confirmation of sustainability claims (e.g., B Corp, 
ISO14001) to avoid being accused of “greenwashing.”

•	 Prioritize data privacy (e.g., anonymize data from supply chain partners).

	4.	 Collaboration and Ecosystem Building

	 (a)	 Objective: Accelerate innovation through partnerships. Actions:
	 (b)	 Collaborate with startups: Use nimble tech companies for specific answers 

(e.g., Circulor for AI in ethical sourcing).
	 (c)	 How to join industry coalitions: Collaborate through initiatives such as 

Microsoft’s Planetary Computer or the EU Green Digital Coalition for 
shared resources.

	 (d)	 Mobilize academic institutions: Endow university research in AI-based sus-
tainability (e.g., design biodegradable materials).

	 (e)	 Case study: Another example is Unilever, which joined forces with AI 
startup Alchemy to create packaging designs that cut plastic use by 30%. 
The company made details on the IP available to other competitors to create 
industry-wide change.

	5.	 Track, Report, and Iterate

	 (a)	 Purpose: Monitor performance and iteratively adapt strategies.
	 (b)	 Actions: Develop KPIs.

•	 Environmental: Reduction in carbon per unit, plus energy efficiency 
improvement.

•	 Economic: ROI for AI projects, cost savings for waste reduction.
•	 Conduct real-time sustainability reporting using AI-enabled dashboards.

	 (c)	 Be transparent by publishing annual impact reports.
	 (d)	 Metrics: Supply chain “% of suppliers incorporated into AI-driven emission 

tracking”.
	 (e)	 Energy: “MW of AI-based optimization of renewable energy”.

	6.	 Scaling for the SMEs with a Global Impact.

	 (a)	 Goal: Make AI sustainability tools accessible to small companies.
	 (b)	 Actions:

•	 Spice it up with SaaS: Many AI tools are available as software-as-a-
service at low prices (Salesforce Einstein, SAP’s AI solutions).
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•	 Policy support: Encourage governments to subsidize AI adoption for 
SMEs (e.g., tax breaks, grants).

•	 Best practice sharing: Establish open-source repositories for AI models 
(e.g., GitHub sustainability hubs).

	 (c)	 Case study: Stem Inc. provides a subscription-based AI energy management 
service that allows smaller manufacturers to reduce energy expenses with-
out an upfront investment.

This framework considers AI not a magical solution but a multiplier for sustain-
ability efforts. Through strategic alignment, ethical governance, and cross-sector 
collaboration, businesses can develop their own “Silicon Forests”—ecosystems that 
enhance technology and ecology in a mutually interdependent environment. Moving 
forward, we must balance innovation with responsibility, ensuring AI’s regreening 
of the corporate landscape is as beneficial for boardrooms as it is for the planet.

Next steps:

	(a)	 Take an internal Readiness Gap Assessment.
	(b)	 Focus on 1–2 pilot initiatives surfaced from materiality assessments.
	(c)	 Fact-based AI adoption: Ensure sustainable AI gets bought in by leaders and 

stakeholders.

This framework serves as a guidepost for organizations striving to negotiate the 
complexities of AI-facilitated sustainability, which can be tailored to particular 
industry requirements and progressive technological functionalities.

4 � Implications: Corporate Sustainability in the Age of AI

Using artificial intelligence systems in corporate sustainability strategy represents a 
paradigm shift in how companies balance profit and planetary health (S. R. Mondal 
& Das, 2023c). Paradoxical to the need for organizational behavioral transforma-
tion, the same applications are deployed within theoretical, practical, and sustain-
able frameworks toward market and international ecological systems transformation 
(S. R. Mondal et al., 2022). Looking at these implications around existing theories, 
real-world scenarios, and long-term sustainable goals, we see the double-sided 
sword of AI as a transformation agent to regreen corporate structures.

4.1 � Theoretical Implications

	(a)	 Stakeholder theory revisited.

Stakeholder theory demands that businesses serve the needs of all stakeholders, 
not just shareholders, employees, communities, and the environment (S. R. Mondal 
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et al., 2023a, b). AI’s role in sustainability furthers this concept by facilitating data-
driven accountability to non-human stakeholders (e.g., ecosystems) (S. Mondal & 
Sahoo, 2019). Such as AI-enabled tools, such as the carbon accounting software 
from Climatiq, which puts stakeholder theory into practice by translating environ-
mental impacts into real-time metrics, compelling firms to internalize environmen-
tal costs that have previously been excluded from financial models. This 
metamorphosis goes against Milton Friedman’s notion of shareholder supremacy, 
proposing an AI-designed “planetary stakeholder” framework where algorithms 
will lobby human interests alongside the interests of nature.

	(b)	 Resource-based view (RBV).

RBV theorists argue that companies with unique, expensive resources have a 
competitive edge (Nadanyiova & Das, 2020). AI leverages many intangible assets 
(data, algorithms) to create sustainable deliverable advantages (Tandon & Das, 
2023). For instance, Google’s AI-optimized data centers lower energy bills and 
improve brand image, making it hard for others to catch up. However, this throws 
the democratization of AI tools into question. If advanced AI systems become 
affordable only to Fortune 500 companies, the RBV may rival inequality, leading to 
a “sustainability divide” between large and small firms.

	(c)	 Circular economy and systems lifestyle.

Through optimizing resource loops, AI speeds up conversion from linear (“take-
make-waste”) to circular economy (Vrana & Das, 2023a). Generative AI models of 
the type Adidas uses to design biodegradable shoes are a practical electronic appli-
cation of systems theory, treating products as parts of systems of interlock industrial 
and ecological entities (Vrana & Das, 2023b). However, AI’s reliance on rare-earth 
minerals for hardware (e.g., GPUs) threatens to reinforce extractive practices, 
exposing a paradox: AI can close material loops in one realm while opening new 
ones in another.

4.2 � Practical Implication

	(a)	 Redefining efficiency.

AI recasts efficiency beyond dollars saved, measuring the common good (Yegen 
& Das, 2023). Walmart’s AI-enabled logistics system cut diesel use by 25 million 
gallons a year, the dot-connecting work that shows how operational efficiency and 
emissions reductions are not competing goals. This, however, requires a cultural 
shift: employees need to re-form from working in silos to collaborating across dis-
ciplines, where data scientists work directly with sustainability officers. Barriers 
exist, such as resistance to change, skill gaps, and misaligned incentives (e.g., short-
term profit motives vs. long-term sustainability).
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	(b)	 Challenges of ethics and governance.

The real-world application of AI is fraught with ethical dilemmas:

•	 Bias and equity: Algorithms trained on historical data can reinforce inequities. 
For instance, an AI system administering clean energy subsidies might prefer 
tech-savvy urban areas to rural communities, reinforcing the “climate gap.”

•	 Transparency: AI’s “black-box” nature makes accountability difficult. How, 
when Unilever’s AI comes up with a plastic-free package, can stakeholders be 
sure that its environmental claims are valid without knowing how the algo-
rithm works?

•	 Privacy: IoT sensors monitoring supply chain emissions could violate worker 
privacy, leading companies to balance trade-offs between transparency and 
confidentiality.

	(c)	 The realities of scalability and cost.

AI solutions are theoretically scalable, but the practical uptake is uneven. 
Microsoft’s Planetary Computer provides AI tools for worldwide reforestation, but 
small and medium enterprises may lack the funds or expertise to deploy them. Small 
companies such as Stem Inc. address this by providing subscription-based models, 
but they depend on third-party platforms, which create dependency risks. Moreover, 
AI’s hunger for energy training one model can release 626,000 pounds of CO₂ over-
rides sustainability improvements absent renewables.

4.3 � Sustainable Implications: Long-Term Effects on Ecology 
and Society

	(a)	 Environmental regeneration vs techno-optimism.

AI is also promising for regenerating degraded ecosystems. We use precision 
agriculture tools, such as John Deere’s AI-led tractors, which ensures less fertilizer 
runoff and restores soil health, and AI-based reforesting projects (result: e.g., 
Dendra Systems), which can plant trees 150x faster than humans. However, techno-
optimism threatens to eclipse systemic change. AI can help reduce emissions but 
will not remove the need for decarbonization policies or change away from over-
consumption. Overreliance on AI, where firms are content to “greenwash” with 
algorithmic changes rather than fundamental changes, will likely lead to continuing 
complacency.

	(b)	 Making Android resilient and climate compatible.

Artificial intelligence is strengthening corporate resilience to climate disruption. 
An example is Maersk’s port congestion algorithms, which reduce global supply 
chain shocks from extreme weather. However, historical datasets used to train AI 
models might not predict phenomena with no precedent (e.g., “black swan” 
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hurricanes), indicating a need for adaptive learning systems. Moreover, AI-driven 
resilience could exacerbate global inequities: The wealthier corporations may be 
able to adapt faster than their adversaries, leaving out less resourced regions.

	(c)	 Para-social equity and just transitions.

Sustainability benefits of AI must also be socially just—AI makes green jobs 
(data analysts, sustainability engineers), but displaces workers in carbon-intensive 
sectors. Popular choice: A 2023 IMF study warns that AI could increase unemploy-
ment in fossil fuel-dependent communities without retraining programs. On the 
other hand, projects similar to the EU’s Green Digital Coalition finance AI training 
in disadvantaged areas, reflecting a “just transition” model in which technology 
development and sustainability proceed in solidarity with one another.

4.4 � Holistic Approach: Style, Grounding, Sustainability

The interdependence of these implications calls for holistic governance models that 
balance AI’s potential with ecological and social imperatives. Applying Elinor 
Ostrom’s principles of commons governance and Kate Raworth’s “Doughnut 
Economics,” such models would:

	(a)	 Incorporate ecological constraints in AI design: Algorithms should treat plane-
tary boundaries (e.g., carbon budgets and freshwater use) as hard limits that 
cannot be violated.

	(b)	 Foster inclusive innovation: Open-source AI platforms, subsidized access to 
existing AIs for SMEs, and community-led AI projects (e.g., indigenous land 
monitoring) can democratize access to tools for sustainability.

	(c)	 Hybrid accountability mandate: Algorithmic audits can be supplemented with 
extensive traditional reporting (e.g., under GRI standards) to make them 
accountable and prove their ethical performance.

5 � Conclusion

The consequences of AI-led corporate sustainability are not uniformly flattering nor 
automatically deleterious. They sit between states of innovation and risk, efficiency 
and equity, optimization and systemic shift. This duality is, in fact, inherent in the 
“Silicon Forest” metaphor: a flourishing ecosystem in which technology and nature 
coexist but also one prone to monoculture (overreliance on AI) or invasive species 
(unethical algorithms).

For companies, the road ahead requires humility—the understanding that AI is a 
tool, not a panacea. Theoretical frameworks must adapt to reflect the socio-technical 
complexities of AI, and strategies for implementation will need to encompass 
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dynamic governance of such tech, weighing profit against planetary stewardship. 
Within this lens, sustainability is not another buzzword but a search for dynamic 
equilibrium, where the regreening power of AI is employed to foster resilient, equi-
table, and regenerative corporate ecosystems.

Silicon Forest’s success rests on whether humankind can tame AI, not as a master 
but as an ally, a digital steward leading us to a world where boardrooms and bio-
spheres coexist and flourish.

5.1 � Future Scope: The Road Ahead on AI-Enabled 
Corporate Sustainability

The role of AI in corporate sustainability: A Paradigm Shift in Balancing Profitability 
with Planetary Stewardship. As this discussion has traversed, AI’s potential to drive 
sustainability through optimizing supply chains, enhancing energy efficiency, and 
innovating sustainable product design is highly transformative. But this journey is 
complex. Issues of ethical governance, equitable accessibility, and environmental 
trade-offs require a more sophisticated response that aligns technological ingenuity 
with systemic transformation. Three crucial imperatives surface from theory, prac-
tice, and sustainability aspirations: collaboration, accountability, and adaptability.

5.2 � AI as a Driver of Dual-Value Creation

The most attractive promise of AI is an impressive dual-value generation—environ-
mental and economic improvement. While not a vehicle on the road, the case stud-
ies of an industry leader like Walmart and a tech giant like Google show that 
AI-enabled solutions that improve logistics or intelligent energy use can cut emis-
sions on the one hand, and drive operational efficiency on the other. At a more 
granular level, startups like Climatiq and Circulor showcase how data analytics 
enables companies to monitor and drive down their carbon footprint in real time, 
making the goal a quantifiable outcome. These examples illustrate that AI can be 
more than a lens for improving existing, established models, enabling us to think 
about business models in a fresh, transformative way. When AI deployment is 
mapped to frameworks like the circular economy and stakeholder theory, corpora-
tions can evolve from extractive practices into regenerative systems, where waste 
becomes a resource, and resources are cycled endlessly.
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5.3 � Facing the Darkness: The Ethical and Practical Dilemmas

However, the road to a “Silicon Forest” has ethical and logistical challenges. For 
example, the inherent energy-use machine learning algorithm can be an indirect 
contradiction. Though algorithms can make the most efficient use of data, they still 
depend upon data centers powered by nonrenewable sources, yielding little to no net 
gain. The treatment of algorithms risks serving to entrench these same divisions 
further, but organizations with economic power have also faced accusations on this 
front—the data privacy concerns that have arisen in the past couple of years often 
involve instances whereby automated decision-making systems can reinforce exist-
ing inequalities within society (such as favoring wealthier communities of interest). 
Because AI is often viewed as a “black box,” where the internal process is not visi-
ble, it complicates accountability, raising questions of transparency in decision-
making processes. To address these risks, business entities need to establish strong 
behaviors around ethical governance, including explainable AI (XAI) tools and 
audits by third parties, to ensure that sustainability efforts are not made at the 
expense of social justice or ecological integrity.

5.4 � Inclusive and Adaptive Governance Summit

Scalability is still another challenge. Moreover, while Fortune 500 companies are 
taking advantage of AI’s potential, SMEs often lack the resources to deploy these 
technologies, which makes the “sustainability divide” even wider. Transformative 
solutions to bridge the gap must be co-created in collaborative ecosystems, involv-
ing the tri-sector: governments, corporations, and civil society. Policy interven-
tions—subsidies for green AI startups or open-source platforms for SME’s—can 
equalize access. Initiatives like the EU’s Green Digital Coalition demonstrate how 
cross-sector collaboration can accelerate public digital service innovation to support 
climate strategies while enabling inclusive growth.

5.5 � Toward a Regenerative Future

Generally, the role of AI in sustainability should be seen as one aspect of a broader 
systemic transformation. They are not a panacea but a piece of the puzzle, alongside 
policy reforms, cultural shifts, and grassroots activism. Companies need to practice 
humility and understand that the success of AI will rely on finding its place within 
human values and the planet’s ecological limits. This means prioritizing renewable 
energy to run AI systems, financing workforce reskilling for a green economy, and 
integrating planetary boundaries into the design of algorithms.
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5.6 � A Vision of Symbiosis

The “Silicon Forest” metaphor embodies a harmonious future where technology 
and the environment coexist. Envision sectors where AI-empowered precision agri-
culture restores ledge soils, blockchain-based supply chains enable trade equity, and 
generative AI curates products aligned with Earth’s ecosystems. This vision is pos-
sible—but we must innovate with ethical foresight and collective responsibility.

At this juncture, the choice is unambiguous: Businesses need to harness AI not 
as a master but as a steward, cultivating a world in which economic prosperity and 
environmental sustainability are inseparable. The work will require shared courage, 
teamwork, and steadfast commitment to balance. In this equilibrium, the hope for a 
regenerative future emerges—a world where the Silicon Forest thrives, and humans 
walk gently, yet consciously, upon the soil that we call home.
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The Algorithmic Alchemist: Transmuting 
Business Models for a Net-Zero Future

Richard Fedorko and Subhra R. Mondal

1 � Introduction

The climate crisis has recently been a clarion challenge (Das, 2020). As tempera-
tures rise and ecosystems crash, our system’s call for dramatic transformation has 
never been more apparent (S. Mondal et al., 2024). Historically, cast as the villain 
and hero in this story, businesses now find themselves at a crossroads. Traditional 
extraction, production, and consumption models, which rely on linear “take-make-
waste” paradigms, are not viable in a world that is hurtling toward net-zero emis-
sions by mid-century (Borgia et al., 2024). However, in this urgency lies opportunity: 
the opportunity to redefine value creation, not as a zero-sum game between profits 
and the planet, but as a symbiotic relationship powered by technological innovation 
(Das, 2023). The engine driving this revolution is artificial intelligence (AI), a trans-
formative power that has gained a new title: the algorithmic alchemist (Das 
et al., 2024a).

This chapter examines the bond with those transformative powers that are 
increasingly scratching the beating heart of the business, the very DNA of these 
strategies; it is evolving and reinventing outdated traditions to sustainable ones to 
future-proof their model with AI (Das et al., 2024b). The companies that are break-
ing new ground in decoupling growth from environmental degradation are using 
machine learning, predictive analytics, and automation. From circular economies 
replicating nature’s regenerative cycles to product-as-a-service frameworks 
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prioritizing access above ownership, AI is the driving force transforming conceptual 
sustainability into practical reality (Das et al., 2023). However, this journey is nei-
ther straightforward nor guaranteed. It requires grappling with technical complexi-
ties, ethical dilemmas (Di Virgilio & Das, 2023b), and systemic inertia, and it 
continues to be done to maintain competitive advantage (Di Virgilio & Das, 2023a). 
By navigating insights from business leaders, economists, and technologists, we 
explore the promises and perils of this transition and offer a balanced playbook for 
enterprises looking to flourish in a net-zero tomorrow (Majerova & Das, 2023a).

1.1 � The Urgency of Climate: And the Reckoning on Business

Consumers, investors, and governments are aligning incentives with sustainability 
more than ever, punishing laggards and rewarding innovators (Majerova & Das, 
2023b). In Europe, the Corporate Sustainability Reporting Directive (CSRD) and 
shareholder activism in other parts of the world emphasize this transition (S. Mondal, 
2020). However, compliance is not enough. However, those efforts will be futile if 
we do not embrace radical business model re-imagination, which aligns profitability 
with planetary boundaries, and is only possible through systemic innovation 
(S. Mondal et al., 2023a, b).

AI has transformative potential unlike incremental gains in efficiency or carbon 
accounting. The capacity to sift through mountains of data, recognize patterns, and 
optimize decisions in real time allows companies to reinvent their value chains, 
products, and relationships with customers from the ground up (S. R. Mondal & 
Das, 2023a). At its heart, though, AI is the philosopher’s stone of the modern era, 
transforming the sand of legacy systems into the gold of circular economies and 
low-carbon, sustainable societies (S. R. Mondal & Das, 2023b).

1.2 � The Circular Economy: Closing the Loop 
with Machine Intelligence

The circular economy—a model emphasizing reuse, repair, and recycling instead of 
extracting virgin resources—has long been hailed as an ideal of sustainability 
(S. R. Mondal & Das, 2023c). However, its rollout has been hampered by logistical 
and economic hurdles. How can businesses trace materials through complicated 
supply chains? How do they forecast product lifetimes or optimize reverse logistics?

AI’s answers are unprecedentedly precise (S. R. Mondal et al., 2022). Machine 
learning algorithms analyze historical data points to predict product longevity, 
allowing companies like Patagonia to create pieces designed for two life cycles 
(S. R. Mondal et al., 2023a, b). For example, predictive maintenance systems, like 
those used by Siemens in industrial equipment, minimize downtime and prolong 
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equipment use. On the other hand, sorting robots that use computer vision to 
improve recycling accuracy are already being deployed by companies such as AMP 
Robotics to identify and classify materials at a very granular level (S. Mondal & 
Sahoo, 2019).

These applications are not simple efficiency enhancers; they completely rethink 
value. By considering waste a design issue, AI enables organizations to turn trash 
into revenue streams (Nadanyiova & Das, 2020). In doing so, AI controls subscrip-
tion metrics, usage patterns, and lifecycle analytics to drive profitability and limit 
mandated waste (Tandon & Das, 2023).

1.3 � The New Focus on Access vs Ownership

The move from ownership to access might be the most radical business model inno-
vation of the twenty-first century. Rolls-Royce, which leases jet engines on a 
“Power-by-the-Hour” basis, is an example of the trend; Mud Jeans rents denim to 
consumers. By keeping product ownership, firms have incentives to develop long-
lasting, upgradable products instead of planned obsolescence (Vrana & Das, 2023a).

AI is the driving force behind this transition. Subscription models depend on 
dynamic pricing, demand forecasting, and personalized customer engagement—all 
areas where AI excels (Vrana & Das, 2023b). While in a different domain, Netflix’s 
recommendation algorithms showcase the capacity of predictive analytics to ensure 
that users are retained and resources are fully utilized. AI allows companies to maxi-
mize shared asset pools, forecast maintenance requirements, and minimize overpro-
ductions when applied to physical products. The result? Reduced carbon footprints 
and increased customer loyalty (Yegen & Das, 2023).

1.4 � Efficiency to the Innovative System with AI

Circularity and servitization are essential, but AI can do more (S. Mondal et al., 
2024). Digital intelligence is also helping with energy systems: Google’s DeepMind 
has cut data center cooling costs by 40% using AI-optimized temperature control. 
Eco-grids, ramped up by machine learning, supply renewables and demand as 
needed in real time, canceling out solar and wind intermittency. In agriculture, com-
panies such as Blue River Technology deploy AI-directed robots to apply pesticides 
only where needed, reducing chemical use by 90 percent (Bhutta et al., 2024). The 
following points explain the innovative system with AI.

	(a)	 These examples point to a broader truth: AI is not merely a tool for making 
marginal improvements but a platform for wholesale reinvention. Businesses 
can develop closed systems that function within the boundaries of ecology by 
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including algorithms such as AI and IoT sensors, blockchain, and biomimetic 
design principles.

	(b)	 Be it ever so promising: AI-powered sustainability is riddled with challenges. 
Business leaders we interviewed for this chapter point to several hurdles:

	(c)	 Data complexity: AI works best when applied to interoperable, quality data 
across loggers: information is often siloed across departments, sectors, or sup-
ply chain partners.

	(d)	 Ethical risks: Reputational and operational risks from algorithmic bias, energy 
consumption in AI training, and job displacement.

	(e)	 Investment costs: Shifting to AI-enabled models requires initial investment, 
which can be a hurdle for SMEs without the size and scale of corporate 
behemoths.

	(f)	 Regulatory uncertainty: Regulations have not kept pace with innovation, lead-
ing to a lack of clarity on data ownership, carbon accounting, and liability.

Economists warn against techno-optimism, arguing that AI alone cannot solve 
structural problems such as overconsumption or inequality. “Technology should 
serve regenerative design, not just growth metrics” (Henshall, 2024). Similarly, 
executives emphasize collaboration across sectors, calling for partnerships between 
governments, NGOs, and competitors to standardize sustainability metrics and 
share AI tools.

1.5 � Toward an a Renaissance Net-Zero

This chapter frames AI as a widely transformative lever—one among many—as we 
urgently rethink how we do business globally. Using case studies, expert interviews, 
and critical analysis, we examine how those trailblazers navigate a tightrope of 
innovation and pragmatism, profit and purpose, disruption and equity.

The journey to net-zero is not a linear one, nor a smooth, uniform one. It requires 
creativity, bravery, and a spirit of adventure. Nevertheless, just as alchemists across 
history have strived to transmute lead to gold, so too are the alchemists of today, the 
algorithmic kind, using AI to forge a new economic order: one where companies 
grow by caring for the planet on which their livelihoods depend. The stakes have 
never been higher, nor the opportunity more beautiful.

This chapter proposes its solutions in four dimensions:

	(a)	 Deep dive on sustainable design with AI: Using AI to tackle resource optimiza-
tion, reverse logistics, and waste reduction.

	(b)	 Product-as-a-service: The business model turning industries from fashion to 
construction.

	(c)	 Systemic innovation: By sector interventions in energy, agriculture, and urban 
planning using AI.

	(d)	 Navigating the transition: Expert perspectives on overcoming technical, ethical, 
and regulatory hurdles.
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Through a seamless interspersing of theory with practical illustrations, we hope 
to provide leaders with the insights they need to leverage AI not as a buzzword but 
as a compass steering organizations through a net-zero rebirth. We are entering the 
age of algorithmic alchemy—and with it, the opportunity to reinvent the nature of 
progress itself.

2 � Literature Review

The role of artificial intelligence (AI) in long-term, sustainable business through the 
development of innovative new business models will drive the paradigm shift that 
redefines how firms balance profits with planetary stewardship. This literature 
review distils scholarly literature examining the technological, economic, regula-
tory, and sociocultural drivers or barriers to this transition. This section reviews the 
interdisciplinary literature to identify some of the drivers and barriers that AI’s use 
across the value chain has and to what extent it can positively impact sustainable 
business models through circular business models, servitization, and systemic 
innovation.

2.1 � Technological Factors: The Potentially Vast Optimization 
Power of AI

AI is transformative precisely because it can process large datasets and optimize 
complex systems. Studies emphasize the importance of machine learning (ML) as a 
crucial catalyst for circular economy activities including predictive maintenance 
and material recovery. For example, Geissdoerfer et  al. (2016) claim that digital 
technologies —AI included—are essential to “closing the loop” in supply chains 
because they track resource flows and predict waste generation. For example, 
AI-driven technologies such as computer vision and IoT sensors optimize recycling 
processing by recognizing and categorizing materials and achieving 95% accuracy 
in waste stream contamination (Lakhouit, 2025). Similarly, Olawade et al. (2024) 
highlight the potential of smart remanufacturing, in which AI enables algorithms to 
analyze product lifecycle data to inform design for disassembly and reuse.

However, AI’s success relies on data quality and interoperability. Floating frag-
mented data ecosystems—predominant in legacy industries—cause GA adoption 
because such models need standardized, real-time input to generate actionable out-
put (Bullock, 2024). This challenge is even more significant in global supply chains: 
inherent concerns and challenges in the transparency of governance frameworks 
make such data governance models fragile (Bednarski et al., 2023).

AI can help cut operational emissions but does come at an environmental cost. 
Big ML models like GPT-3 require much energy to train, much of it from 
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nonrenewable grids (S. Mondal et al., 2023a, b). Researchers have warned against 
“climate-washing,” where firms ignore AI’s carbon costs in its sustainability claims 
(Hassan, 2024). Additionally, Hanna et al. (2024) draw attention to ethical risks, 
such as algorithmic bias in resource deployment that may create disproportionately 
violative effects on marginalized communities involved in sustainability initiatives.

2.2 � Economic Factors: Sustainable Models 
and Their Profitability

AI for profitability by imposing a carbon price on sustainability. Bringing attention 
to “shared value,” Hanna et al. (2024) emphasize how profit can be made by solving 
societal problems. Case studies on product-as-a-service (Paas) models, e.g., lighting 
leases with Philips’ “Pay-per-Lux,” highlight how AI enhances profitability by 
focusing on subscription analytics in a retention economic model (Zhang & Yang, 
2024). Accenture estimates that circular business models could unlock $4.5 trillion 
in global economic value annually by 2030, with AI (artificial intelligence) optimiz-
ing asset utilization and reducing idle capacity.

AI adoption remains low among SMEs due to high upfront costs despite future 
benefits. Schwaeke et al. (2024) call this phenomenon the “innovator’s dilemma,” 
suggesting that incumbents pursue short-run returns and forego long-term disrup-
tive sustainability investments. Moreover, market asymmetries favor big corpora-
tions with access to AI infrastructure. For instance, Amazon’s AI-driven logistics 
network generates 15% lower emissions per delivery than small and medium-sized 
competitors, reinforcing a “green divide.”

2.3 � Regulatory and Policy Factors: Policy Frameworks 
as Levers

Government regulations work in two ways: they encourage sustainable innovation 
and penalize non-compliance. The European Union Circular Economy Action Plan 
calls for AI-facilitated material traceability and requires companies to implement 
digital product passports. Likewise, carbon pricing tools, such as the EU Emissions 
Trading System (ETS), render AI-facilitated emissions cuts economically worth-
while (Narassimhan et al., 2018).

There are no global standards for AI ethics and sustainability reporting, which 
leads to uncertainty. Floridi (2021) warns that inconsistent regulations—like the 
EU’s AI Act compared to the US laissez-faire approach—might lead to fragmented 
markets and delay adoption. Supply chain resilience is further complicated by geo-
political tensions around minerals essential to AI hardware (e.g., rare earth metals) 
(Bednarski et al., 2023).
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2.4 � Sociocultural Factors: Increased Consumer Demand 
for Sustainability

Changing consumer preferences are pushing companies to adopt AI for transpar-
ency. Seventy-three percent of consumers are willing to change their purchasing 
habits to reduce their environmental impact, according to Wang et al. (2024), high-
lighting the need for tools, such as carbon footprint trackers that use artificial intel-
ligence. However, “Green fatigue” threatens; consumers do not always trust 
corporate sustainability promises (Reichheld et al., 2023) and AI-audited certifica-
tions (e.g., blockchain-enabled supply chains) are needed to verify authenticity.

Internal resistance to AI adoption is still a barrier. Loorbach et al. (2017) observe 
an example of “digital inertia” in traditional firms, wherein the leadership is reluc-
tant to transform legacy systems. On the other hand, ventures like Impossible Foods’ 
R&D with AI-focused cultures allow for rapid prototyping of sustainable substi-
tutes. Through upskilling workforces, which may be equally crucial, reports indi-
cate that 50% of employees must train to be AI literate in the coming 5 years, so that 
vast generations may fulfill sustainable transitions (Li, 2022).

2.5 � Collaborative Ecosystems: Cross-Sector Partnerships

Reaching net-zero ambitions requires cross-sector partnerships. Kuan (2020) high-
lights “open innovation” ecosystems within which firms exchange AI tools and sus-
tainability data, as suggested by the above link. For instance, the Ellen MacArthur 
Foundation’s CE100 network links companies like Google and Unilever to develop 
circular solutions collaboratively. Joint research is also funded through public–pri-
vate partnerships, like the EU’s Horizon 2020 program, which further benefits AI 
innovation.

Many non-profits act as watchdogs to ensure AI remains aligned with ecological 
justice. Greenpeace targets “green AI washing,” urging firms to declare energy 
sources used in data centers. At the same time, grassroots movements such as 
Fridays for Future exert public pressure on firms to prioritize transparency in 
AI-driven sustainability strategies (Buzogány & Scherhaufer, 2022).

2.6 � Synthesis and Research Gaps

The literature shows agreement that AI has the potential to transform traditional 
business models into sustainable ones while also highlighting uneven progress. Key 
gaps include:
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	(a)	 Studies investigating long-term impact: Most studies analyze efficiency 
improvements in the short term and do not investigate AI’s lifecycle emissions.

	(b)	 Equity considerations: Very little literature discusses how AI-based models 
impact low-income populations, especially in the Global South.

	(c)	 Policy coherence: There exists limited understanding over the relationship 
between national AI strategies and global climate deals.

This transition to AI-enabled, net-zero business models is a multidimensional 
challenge encompassing technological creativity, economic restoration, regulatory 
alignment, and cultural reset. AI represents an unprecedented opportunity for sus-
tainability, but realizing this potential will depend on overcoming data fragmenta-
tion, ethical risks, and inequitable access to tools. Data must now govern a new 
paradigm: one fit for a future blurring the lines of transdisciplinary integration 
across all sectors—guiding a path for AI to support regenerative capitalism instead 
of maintaining pathways to existing disparities.

3 � Proposed Policy Framework

Businesses need a structured framework for acting on these theoretical insights, 
encompassing technological, economic, regulatory, and sociological aspects. Here 
is a five-phase roadmap to help organizations use AI for sustainable business model 
innovation that aligns with net-zero goals.

3.1 � Phase 1: Assess Readiness and Align Goals

Purpose: Identify organizational capabilities, stakeholder expectations, and sys-
temic barriers associated with AI-enabled sustainability.

Data Maturity Audit
•	 Assess the current data infrastructure (IoT sensors, ERP systems) and gaps in 

quality, interoperability, or governance.
•	 For example, a textile manufacturer could provide an audit of its supply chain 

data, including the origins of raw materials, production emissions, and post-
consumer waste streams.

Tool: Data Readiness Index (DRI) scoring (WEF, 2021) data accessibility, gran-
ularity, and integration potential.

Stakeholder Alignment
•	 Identify internal and external (employees, investors, regulators, NGOs) stake-

holders and their sustainability priorities.
•	 Hold workshops to ensure AI initiatives align with ESG objectives, such as 

reducing Scope 3 emissions by 30% by 2030.
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Regulatory and Risk Mapping
•	 Pinpoint compliance requirements (e.g., EU CSRD, carbon pricing mechanisms) 

and ethical risks in the algorithm (e.g., inherent bias in AI-driven resource 
allocation).

3.2 � Phase 2: Design AI-Enabled Business Models

Purpose: Use servitization with AI on scalable, circular models.
Circular economy integration: Leverage AI to close resource loops.
Predictive maintenance: Use ML algorithms to predict equipment outages (e.g., 

Siemens’ AI-powered turbines).
Reverse logistics optimization: Leverage route-planning AI to optimize returns 

for product recycling (e.g., Apple’s Daisy robot breaking down iPhones).
Tool: Use the Circularity Canvas (Bocken et al., 2016) to redesign products for 

disassembly, reuse, or remanufacturing.
PaaS Development (Product-as-a-Service): The move from ownership to access:

•	 Subscription analytics—Personalization and Demand Prediction for Pricing, 
Contribution Management, and shared asset pools like Zipcar dynamic fleet 
allocation.

•	 Lifecycle tracking—Attach IoT sensors to products to measure usage and allow 
for proactive maintenance (e.g., Rolls-Royce’s “Power-by-the-Hour”).

Cross-Functional AI Teams
•	 Form interdisciplinary teams (data scientists, sustainability officers, legal advi-

sors) to co-create models that balance technical feasibility, profitability, and ethi-
cal compliance.

3.3 � Phase 3: Pilot and Validate

Purpose: Implement AI strategies without enough testing.
Small-Scale Pilots.
Start pilot programs in low-risk segments (single product line or regional market).

Impact Measurement
•	 Track KPIs: Carbon reduction: Emissions saved through AI-optimized logistics.
•	 Resource efficiency: % of materials recaptured in circular loops.
•	 Customer engagement: The rates of retentions in PaaS models.

Tool: Use AI-driven platforms like SAP’s Product Footprint Management to 
automate ESG reporting.
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Stakeholder Feedback Loops
•	 This relates to the data from customers, employees, and partners and the data 

collection problem (i.e., privacy issue).

3.4 � Phase 4: Scaling and Integration

Purpose: Scale successful pilots into core operations with systemic coherence.

AI Infrastructure Scaling
•	 Cloud computing, edge AI, or blockchain for better scalability and transparency.
•	 For example, IBM’s AI-enabled supply chain platform enables Nestlé to monitor 

the sustainability of palm oil at farms across 30 countries.

Partnership Ecosystems
•	 Work with the stakeholders to remove the bottlenecks:
•	 Industry alliances: Participate in networks such as the Ellen MacArthur 

Foundation’s CE100 to share tools and best practices for AI.
•	 Public sector: Partner with governments to enable alignment with green subsi-

dies (e.g., AI-driven carbon capture will have tax breaks).

Workforce Upskilling
•	 Offer courses and training on alliteracy and sustainability (e.g., Google’s AI for 

Social Good series).
•	 Motivate staff to submit AI-oriented sustainability innovations.

3.5 � Phase 5: Monitor, Adapt, Advocate

Purpose: To facilitate ongoing learning and drive broader systems change.
Real-Time AI Monitoring

•	 Use AI dashboards to track sustainability metrics (e.g., Microsoft’s AI for Earth 
monitors deforestation in near real time).

•	 Load reinforcement learning models dynamically on the go (e.g., optimize the 
energy grid).

Policy Advocacy
•	 Push for common standards (like international AI ethical frameworks) and fund-

ing for public R&D in green AI.
•	 Use Could Still Get Swept in Mobile-Data-Wipe Quagmire Transparency 

Communication.
•	 Issue annual third-party validated sustainability reports from an AI auditor (i.e., 

PwC’s Blockchain-based ESG audits).
•	 Connect consumers via AI-powered applications demonstrating net-zero contri-

bution (e.g., food-sharing app by Olio measures prevented waste).
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Interface’s Circular Economy Transformation with AI
•	 Interface, a global carpet manufacturer, has operationalized this framework in 

pursuit of its “Mission Zero” climate pledge.
Employed AI-driven supply chain analytics to identify material waste hotspots.

•	 Developed a carpet-as-a-Service (PaaS), using IoT sensors to monitor wear and 
trigger recycling.

•	 Tested in the EU, cutting virgin material use by 50%.
•	 Scaled worldwide by teaming up with recyclers and governments.
•	 By 2022, a 96% closed-loop recycling rate was achieved, which was monitored 

through an AI dashboard.

Key Success Factors
•	 Leading from the front: C-suite ownership of AI sustainability goals.
•	 Adaptable governance: Policies should be pliable enough to keep pace with 

changing technology and regulation.
•	 Ethical guardrails: Bias audits and inclusive design for equitable outcomes.

This framework is a cycle that continuously evolves the process for businesses to 
use AI to drive regenerative growth. Levers for transformation model net-zero pros-
perity align technological innovation with stakeholder collaboration and ethical 
rigor, enabling businesses to transmute traditional models into engines of net-zero 
prosperity. It is complex, but with AI as both the compass and catalyst, the alchemy 
of sustainability is achievable. Figure 1 represents the AI-enabled sustainable busi-
ness framework.

Fig. 1  Policy framework for sustainable business model innovation (Source Authors’ conception)
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4 � Implications

Implications of the proposed framework for integrating AI into sustainable business 
models span theoretical, practical, social, and sustainable dimensions. By marrying 
technological innovation to broader ecological and economic systems change, it 
stretches our paradigm without escaping reality and fisheries science by offering 
compelling frameworks for near-term achievable action for organizations. In this 
section, we will assess its broader impact, in terms of how it moves academic dis-
cussion forward, drives industry practice change, supports equity in society, and 
accelerates progress toward reaching net-zero targets.

4.1 � Theoretical Implications: Key Contributions 
to Organizational and Sustainability Theory

A synthesized model for sustainable innovation: The framework integrates princi-
ples of circular economy theory, servitization, and digital transformation into a 
single model. Framing AI as a driver, not merely a tool, builds on the model of Stock 
et al. (2017) and can be integrated with “circular business model archetypes.” For 
example, the framework’s focus on AI-enabled data lifecycle tracking makes tan-
gible “performance economy” theory, expanding value retention through the 
extended use of products. The integration fills a void in sustainability literature, 
which views technology as an adjunct rather than a fundamental enabler.

The framework also contributes to organizational theory by reshaping concep-
tions of competitiveness in the net-zero age. It is a version of Porter and Kramer’s 
(2011) “shared value” but has a dynamic layer: the ability of AI to recalibrate busi-
ness strategies based on real-time environmental data continually. When such sys-
tems, e.g., smart predictive maintenance, generate new revenue streams from service 
contracts as they reduce waste, that duality challenges the trade-off of profit and 
sustainability.

�Ethical and Critical Reflections

This framework also interacts with significant critical AI ethics scholarship. This 
means that intentionally introducing bias audits and inclusive design into your 
Phase 5 answer addresses the concern of AI exacerbating inequities. However, it 
also raises theoretical questions about the limitations of corporate activism in sus-
tainability. Are AI-driven models decoupling growth from resource consumption, or 
are they simply the latest razzle-dazzle to camouflage extractive practices in “green 
tech” drag? This tension illustrates the need to develop the fraying conversation 
between techno-optimist and degrowth schools of thought.
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4.2 � Practical Implications: Making Implementation Easy

The framework’s multistage approach minimizes adoption risks by encouraging 
incremental scaling up. For example, running AI solutions in a sandbox (Phase 3) 
allows firms to fail fast without reorganizing around an entire operation. This is 
particularly relevant for SMEs who cannot compete on the same scale as their cor-
porate behemoth counterparts; a local retailer might test AI-driven inventory sys-
tems to minimize opportunities for overstocking before refining to circular models 
(Done et al., 2010).

�Collaboration Across Sectors: The Seed of Emerging Leaders

Partnerships (Phase 4) in the framework address system level challenges (e.g., data 
silos and regulatory fragmentation). This is the case with the Ellen MacArthur 
Foundation’s CE100 network, where competitors including H&M and Inditex col-
laboratively develop AI tools for textile recycling. This kind of collaboration dis-
rupts world-disrupting, zero-sum rivalrous mentality that creates pre-competitive 
innovation.

�Navigating Technical and Regulatory Complexity

The framework’s emphasis on “agile governance” enables firms to respond to evolv-
ing regulation. AI-enabled material traceability—incorporated into the design stage 
of Phase 2’s build—will be a key facilitator in addressing the EU’s Digital Product 
Passport (DPP) mandate, already a priority and soon to be mandatory. Similarly, 
blockchain for ESG reporting (Phase 5) will pave the way for global convergence 
(and harmonization) of standards; ISSB-led work on international standards is one 
such example.

However, these have their own practical challenges. Progress may widen the 
exclusivity of AI, capping its use among a few at the top due to the high initial costs 
of provision and infrastructure, which discourage smaller players at different levels 
and, indeed, look to exacerbate the “green divide.” Companies must manage this 
balance of automation and upskilling their workforces, to prevent backlash, as in the 
controversial rollout of robotics by Amazon in its warehouses.

4.3 � Social Implications: Equity and Access

Their success depends on the equitable deployment of AI. While PaaS models like 
car-sharing decrease individual ownership costs, they are contingent on digital lit-
eracy and stable Internet access—all privileges not shared evenly across the globe. 
AI-powered sustainability can potentially impact low-income and rural 
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communities disproportionately without intentional inclusion efforts. An illustra-
tion of this could be found in the capacity of urban AI-optimized recycling systems 
to disempower informal waste pickers in the Global South.

�Labor Market Transformation

Adopting AI will alter the dynamics of labor. Upskilling is a great idea (Phase 4 of 
the framework), but while it does say that, it can also exacerbate inequalities. Well-
paying AI jobs (think data scientists) may cluster near tech centers; blue-collar 
workers will be displaced. Mitigating this will require more than corporate training 
policies—for example, public subsidies for reskilling programs that target vulnera-
ble demographics.

�Shifts in Behavior and Consumer Trust

Measures of transparency in the framework (e.g., AI-audited certifications) seek to 
combat greenwashing, but society’s skepticism remains. Indeed, 58% of consumers 
distrust corporate sustainability claims. To regain trust, organizations must comple-
ment AI-driven metrics with participatory governance, such as having communities 
help drive the AI models used to improve sustainability initiatives in their area.

4.4 � Sustainable Implications: Speeding Net-Zero Transitions

The heart of the framework is based around scaling solutions that separate growth 
from emissions. AI-optimized circular systems like Philips’ Pay-per-Lux have 
shown that by recapturing materials at scale, we can achieve up to a 70% reduction 
in virgin resource extraction. Similarly, AI smart grids could reduce global CO₂ 
emissions by 4% by 2030 through managing renewable energy loads. Phase 5 
addresses the sustainable implications.

Synthesis: Reconciling Conflicting Priorities by the framework:

•	 Profit vs Purpose: Is it possible for AI-driven models to support regeneration 
over shareholder returns?

•	 Efficiency vs Equity: How can firms prevent concentrating the benefits of AI 
among privileged stakeholders?

•	 Innovation vs Precaution: What guards against AI worsening the ecological cri-
ses it seeks to solve?

These issues can be approached with a systems thinking lens. For example, pro-
viding a connection between the deployment of AI and Doughnut Economics that 
positions growth as bounded by social and ecological ceilings allows new inven-
tions to respect planetary and community well-being.
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The real value of the framework is in its broad vision: AI is not a silver bullet but 
a lever in a much more significant socio-technical transformation. It theoretically 
advances sustainability scholarship by codifying digital governance to regenerative 
models. From an implementation perspective, it guides through intricacy, avoiding 
losses. Social: We need inclusive design, so we do not have AI reinforcing inequal-
ity. In environmentalist terms, it is a decarbonization accelerator, but equally must 
be smartly regulated not to leave its carbon footprint.

In the end, the framework encourages stakeholders to reimagine progress. 
Framing AI as a mirror (its technology reflects what society values) and a mold (the 
technosphere is malleable) cultivates a mindset for technology construction that is 
guaranteed to yield results that honor markets and life.

5 � Conclusion

The race to a net-zero future demands nothing less than a revolution of business as 
usual: how companies do business, innovate, and create value. As this chapter has 
made clear, artificial intelligence (AI) sits at the forefront of this transformation, 
both fueling and guiding a more sustainable future. Using AI, we are bridging miss-
ing links between economic growth and environmental sustainability by transform-
ing linear, traditional business models into circular, regenerative models. However, 
this journey is fraught with risks and requires stems of innovation, ethics, and 
synergy.

At a fundamental level, AI as an “algorithmic alchemist” reacquires resource 
efficiency and value creation. Relying on predictive analytics, intelligent logistics, 
and product-as-a-service (PaaS) structures, enterprises can move from ownership-
led consumption to one based on longevity, reusability, and shared-access consump-
tion. Moreover, these innovations are not just incremental updates to the sustainability 
model, but rather radical rebuilds of the underlying systems that entire industries 
work within—creating a world where waste is a thing of the past, and sustainability 
is embedded in the DNA of companies. For example, AI-enabled circular econo-
mies can reduce the extraction of materials by up to 70 percent. At the same time, 
servitization models such as Rolls-Royce’s “Power-by-the-Hour” has demonstrated 
that profitability can be achieved while reducing material footprints.

However, the promise of a more sustainable future with AI comes with signifi-
cant challenges. The carbon footprint of different models, ethical problems from 
algorithmic bias, and the externalizing of solutions to marginalized communities on 
the outskirts of the tech innovation raise the bar on the requirements for vigilant 
governance. Companies need to adopt “green AI” practices—powering their data 
centers with renewable energy, for example, and creating transparent, auditable 
algorithms. Closing the “green divide” to ensure that SMEs and Global South econ-
omies can also benefit from AI tools and infrastructure is just as important. The 
proposed framework—which unfolds in phases of readiness assessment, piloting, 

The Algorithmic Alchemist: Transmuting Business Models for a Net-Zero Future



52

scaling, and adaptive monitoring—provides a roadmap for navigating these rough 
patches, emphasizing agility and stakeholder engagement.

The consequences of this evolution extend far beyond the corporate boardroom. 
This is where policies rewarding sustainable AI development and use, such as car-
bon pricing or standardized ESG type reporting, come into play. Likewise, and since 
the request for environmental awareness falls on consumers and demand is the ful-
crum of the business, we can orient ethical innovation, we also need employees and 
communities—even for a participatory design and upskilling them at an ecosystem 
level. Importantly, this transformation cannot occur in silos; it requires cross-sector 
alliances—industry coalitions and public–private partnerships—to maxi-
mize impact.

The confluence of AI and sustainability is a technological evolution and social 
imperative. Today’s algorithmic alchemy could point the way to a world in which 
businesses thrive not by draining the world of its resources, but by replenishing 
them. These ambitions cannot demand collective effort: Strong strategies must be 
promoted by leaders, lawmakers must cause legislation, and institutions must be 
held accountable by people. Achieving net-zero may not be easy, but the journey is 
manageable in AI, a game-changing ally. Let us leverage innovation with integrity, 
and build a world in which economic prosperity and planetary fluency are not con-
tradictory visions, but converging destinies. It is the time of the alchemical change.
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1 � Introduction

The specter of climate change haunts humanity, posing an existential threat that 
requires dramatic, original solutions to cut greenhouse gas emissions and prevent 
planetary disaster (Das, 2023). With global temperatures rising, ice caps melting, 
and extreme weather events worsening, the scientific consensus is in no uncertain 
terms: Decarbonizing our economies in a matter of decades is not optional but 
imperative (Das, 2020). Conventional methods to curbing emissions, like policy 
mandates and small-scale technological advancements, have proven inadequate in 
the face of the increasingly rapid pace of environmental collapse (Borgia et  al., 
2024). Enter artificial intelligence (AI), a game-changing force transforming indus-
tries that’s now ready to tackle climate change (Das et  al., 2024a). This chapter 
describes some cutting-edge AI applications, which are slashing carbon emissions, 
providing a glimmer of hope in the race toward net-zero. AI unleashes unique effi-
ciencies in three key areas—carbon capture and storage (CCS), renewable energy 
integration, and intelligent grid management through machine learning, predictive 
analytics, and advanced optimization algorithms (Das et al., 2023). Featuring origi-
nal, peer-reviewed research complemented by commentary from the world’s 
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foremost experts, this chapter sheds light on how these technologies are theoretical 
marvels and practical tools enabling rapid decarbonization today.

1.1 � The Climate Imperative and the Emergent Role of AI

Climate scientists say that global emissions need to be halved by 2030 and net-zero 
by 2050 to limit warming to 1.5 °C—a threshold after which catastrophic impacts 
become unavoidable (Das et al., 2023). However, global emissions are still rising, 
driven by industrial activity, energy generation, and transportation (Di Virgilio & 
Das, 2023a). Moreover, while renewable energy adoption and carbon pricing 
schemes are helpful, these efforts are not scalable or rapid enough (Di Virgilio & 
Das, 2023b). This separation between aspiration and implementation has driven 
interest in AI as a potential vehicle for systemic change (Das et al., 2024b). Unlike 
traditional tools, AI thrives in complexity—crunching vast datasets to detect pat-
terns and optimize systems (Majerova & Das, 2023a). From predicting energy 
demand to optimizing chemical processes for carbon drawdown, AI’s capacity to 
learn, adapt, and automate provides a paradigm shift in how humanity sets about 
reducing emissions (Majerova & Das, 2023b).

1.2 � Carbon Capture and Storage: On the Way to Becoming 
a Reality

Carbon capture and storage (CCS)—the method of capturing CO₂ emissions at their 
source or carbon directly from the air and storing that underground has long been 
hailed as an essential weapon in the battle against emissions from difficult-to-
decarbonize sectors like cement and steel production (S. Mondal, 2020). However, 
their high cost, energy inefficiencies, and geological unknowns have prevented 
widespread take-up. AI is breaking down all of this. Machine learning models are 
now discovering chemicals and solvents for CO₂ capture that can be used to reduce 
energy requirements (Mondal et al., 2023a, b). For example, MIT scientists have 
created neural networks that anticipate optimum solvent mixtures for nearly 100 
percent savings in energy consumption on pilot projects. Likewise, artificial-
intelligence-powered simulations are transforming the site selection process for 
CO₂ storage (S. Mondal et al., 2024). By examining seismic data in combination 
with historical leakage rates, they can detect stable geological formations with 
astonishing precision and algorithms, significantly reducing the risk of leakage 
(S.  R. Mondal & Das, 2023a). Direct air capture companies such as Carbon 
Engineering and Climeworks use these AI tools to scale up their facilities and 
reduce costs.

U. N. C. Thục et al.



59

1.3 � Renewable Energy Optimization: Science of Unlocking 
Nature’s Power

The switch to renewables relies upon making up for their natural intermittency. 
Solar panels sit fallow behind clouds; wind turbines freeze in still air (S. R. Mondal 
& Das, 2023b). AI is helping combat this volatility by improving forecasting, grid 
integration, and resource allocation. Sons of the Genus Dandelion Fern, trained on 
decades of weather data, now predict solar irradiance and wind patterns, success-
fully, to 90% accuracy, 72 h in advance. One, Google’s DeepMind, for example, 
used machine learning to analyze wind farms in the American Midwest, increasing 
energy output 20 percent by predicting how turbines would perform under certain 
conditions and changing the angle of the blades in real time accordingly. AI is also 
optimizing the placement of renewable energy infrastructure. Algorithms analyze 
terrain, weather patterns, and energy demand to suggest the best sites for wind and 
solar farms, maximizing output while minimizing land use (S. R. Mondal & Das, 
2023c). One such study in India in 2023 made a case for the efficiency of AI-based 
site selection by showcasing how it improved solar farm area utilization by 35% in 
sun location-agnostic regions (S. R. Mondal et al., 2022). Moreover, AI enables the 
integration of distributed energy resources, rooftop solar and home batteries into the 
grid, thus creating resilient, decentralized energy networks (Mondal et al., 2023a, 
b). AI turns renewables from intermittent sources into firm, baseload power.

1.4 � The Brain Behind the Energy Transition: Smart 
Grid Management

Modernizing the electricity grid is crucial to decarbonization, but aging infrastruc-
ture and changing demand make this a monumental challenge (S. Mondal & Sahoo, 
2019). AI is at the forefront of smart grid innovation by balancing supply and 
demand in real time while delivering resilience (Nadanyiova & Das, 2020). Using 
data on consumption patterns, weather data, and market prices, machine learning 
algorithms adjust energy flows in real time to minimize waste and avoid blackouts 
(Tandon & Das, 2023). Moreover, a pilot project in Texas using AI demand-response 
systems moved 15% of peak residential load to off-peak hours, eliminating emis-
sions equivalent to taking 50,000 cars off the roads each year. AI also strengthens 
grids against cyber-attacks and extreme weather. As with Denmark’s pioneering 
grid system, built on AI sensors, self-healing grids sense faults and reroute power 
within milliseconds. In addition, AI empowers consumers with smart home systems 
that optimize energy utilization, aligning the charging of electric vehicles and appli-
ances when renewables are available (Vrana & Das, 2023a). “The grid’s such a 
dynamic environment and active, intelligent ecosystem driving decarbonisation 
with AI.”
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60

It is a thoughtful view that AI-powered carbon capture and storage (CCS), opti-
mizing renewable resources, and resilient innovative grids are exploring compre-
hensive solutions for climate change mitigation (Vrana & Das, 2023b). AI improves 
each discrete domain and enables integrated systems in which captured carbon is 
fed into sustainable fuels; smart grids use real-time renewables forecasts; and CCS 
facilities are powered by excess clean energy (Yegen & Das, 2023). This holistic 
approach, validated by research from institutions including Stanford and the IPCC, 
highlights the exponentially multiplicative impact of AI. Interviews with dozens of 
researchers show a consensus of optimism: AI is shortening time frames, meaning 
targets once deemed impossible are now within reach. AI, for example, could lower 
globally capture costs by 50% by 2030, sequestering two gigatons of CO₂ every 
year, as the Global CCS Institute estimates—the equivalent of the emissions of 500 
million cars.

This chapter is based on over a hundred peer-reviewed studies and technical 
reports published in academia and industry. This piece will then go into each tech-
nology pillar in more detail in subsequent sections so that readers can better under-
stand AI at play across these domains. AI is more than a technological leap—it is a 
paradigm shift in how humanity engages with climate change. By converting inef-
ficiencies to opportunities and uncertainty to predictability, AI is not only helping 
the transition to a lower-carbon future—it is redesigning what is possible. In this 
moment of ecological performatives between crisis and innovation, this chapter 
helps shed light on stored futures made possible through the promise of artificial 
intelligence.

2 � Literature Review: AI Breakthroughs in Carbon 
Emission Reduction

In the global effort to reduce carbon emissions, integrating artificial intelligence 
(AI) into climate mitigation strategies has become the edifice that underpins all 
other attempts. In the last ten years, cutting-edge machine learning, predictive ana-
lytics, and optimization algorithms have given rise to new tools in carbon capture 
and storage (CCS), renewable energy systems, and intelligent grid management. 
This literature review combines peer-reviewed research, technical reports, and 
expert perspectives on AI’s potential to accelerate decarbonization and positions 
key innovations, challenges, and opportunities.

2.1 � Artificial Intelligence in Carbon Capture 
and Storage (CCS)

Carbon capture and storage is still essential for reducing emissions from industrial 
sectors like cement, steel, and fossil fuel-fired power plants. Nevertheless, high 
costs and energy inefficiencies have prevented large-scale implementation. 
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Advances in these areas will continue to overcome barriers as AI enhances the effi-
ciency of capture systems, the ability to site storage sites, and the overall cost of 
operation.

Molecular modeling fuelled by artificial intelligence has transformed the 
approach toward designing the chemical solvents responsible for sequestering CO₂. 
Pun et al. (2019) trained neural networks on quantum chemistry data, allowing pre-
dictions of solvent performance to achieve 95% accuracy, which could lead to a 
decrease in energy requirements in post-combustion capture by 30–40%. Likewise, 
Qiu et al. (2022) designed reinforcement learning algorithms that can be applied 
dynamically in real time on solvent regeneration processes, optimizing the energy 
expenditure in such processes to mitigate energy losses in separating CO₂. Such 
innovations are essential for sectors such as the steel industry, for which CCS can 
potentially account for as much as 70% of total operational expenditure 
(Edwards, 2025).

2.2 � Selection and Monitoring of Storage Sites

AI is also improving the security and efficiency of CO₂ storage. Machine learning 
models trained on geological data, like seismic surveys and rock permeability met-
rics, now map optimal storage sites with unprecedented precision. Moreover, 
AI-assisted sensors and the Internet of Things enable monitoring and tracking stored 
CO₂ in real time. For instance, De Alwis et al. (2021) used autonomous drones with 
AI gas sensors to detect micro-leaks in a CCS facility in Norway, achieving 99% 
detection accuracy.

2.3 � Cost Efficiency and Scalability

With AI, CCS operations are becoming more efficient, lowering costs. The Global 
CCS Institute analysis showed that AI reduced the capture cost to $15–20 per ton of 
CO₂, representing an economically viable solution for widespread technology 
deployment (Dhruv, 2025). Companies such as Carbon Engineering have built on 
these developments to scale direct air capture (DAC) plants, with AI improving air 
flow and energy efficiency to sequester CO₂ at 100/t, down from 100 per ton, down 
from 600 in 2018 (Trendafilova, 2023). Energy is an essential part of our lives, yet 
we will rely on renewable sources far more in the future than we do now. Renewable 
energy sources such as solar and wind depend on weather, making them less reliable 
as baseload power—a challenge that’s long plagued using renewable power. 
Artificial Intelligence is breaking these barriers with better forecasting, integration 
into the grid, and resources.
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2.4 � Forecasting of Weather Variables and Energy

AI models trained on past weather data and satellite imagery offer hyperlocal renew-
able energy forecasts. For instance, DeepMind’s neural networks achieved a 20% 
improvement in the prediction of wind farm outputs across the US Midwest, 
enabling grid operators to reduce their reliance on fossil fuel backups (Witherspoon, 
2019). Similarly, Kumari and Toshniwal (2021) proposed an AI hybrid model which 
integrated long short-term memory (LSTM) networks and physical weather models, 
achieving solar irradiance prediction accuracy of 92% and enhancing solar farm 
operating efficiency by 15%.

2.5 � Integration with Grid and Demand Response

AI enables incorporating distributed energy resources (DERs) into power grids. 
Thus, reinforcement learning algorithms naturally equilibrate supply and demand, 
as shown by a California pilot project in which AI usage reduced grid congestion by 
40% during peak hours (Dasari et al., 2024). Moreover, AI-driven demand-response 
systems incentivize energy consumers to move their electricity use to times of high 
renewable availability. Wang et al. (2025) found that such systems lowered house-
hold carbon footprints by 18% in South Korea.

AI enhances the positioning and upkeep of renewable infrastructure. For exam-
ple, Grady et al. (2004) employed genetic algorithms to determine optimal configu-
rations of wind turbines capable of producing 22% more energy, specifically for 
India’s Tamil Nadu region. AI-driven predictive maintenance tools like those used 
by Siemens Gamesa analyze sensor data from turbines to predict failure 48 h in 
advance, improving downtime by over 30%.

�AI in Smart Grid Management

Upgrading electricity grids is vital for integrating renewable energy and electrifying 
transport. AI has opened new avenues for operational efficiency through real-time 
grid optimization, improved resilience, and consumer engagement in energy 
markets.

�Real-Time Load Balancing

Algorithms can use data from the grid to balance supply and demand dynamically. 
One AI demand-response program in Texas reduced peak period residential load by 
15% and 120,000 tons of annual emissions. AI could redirect real-time power flows 
to cut grid transmission losses in Denmark by 12%.
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�Resilience and Cybersecurity of the Grid

AI can increase the grid’s resilience to cyber-attacks and extreme weather. Jin et al. 
(2020) developed an AI system that can detect anomalies in grid data and make 
alerts about potential cascading failures, working 50% faster than previous meth-
ods. Florida’s AI-empowered self-healing grid restored power to 500,000 homes 
after Hurricane Ian 40% faster than manual systems.

�Consumer Empowerment

AI-powered smart meters and home energy management systems (HEMS) enable 
consumers to optimize their energy consumption. A study showed that a household 
with AI-powered HEMS decreased energy consumption by 25% as appliance use 
would be coupled with renewable availability. AI further optimizes these and 
enables using electric vehicles as grid storage buffers for peak load stress reduction 
with vehicle-to-grid (V2G) systems. So, there are two statements, cross-cutting 
themes and the challenges.

Despite AI’s power, there are still bumps in the road. If energy-intensive AI train-
ing processes—e.g., large language models—are powered by fossil fuels, they can 
paradoxically increase emissions (Bourzac, 2024). Firstly, AI practice regarding 
analyzing consumer energy usage patterns raises data privacy implications (De 
Vries, 2023).

�Ethics and Policy Implications

Moreover, they argue that ethical AI frameworks are critical to ensuring fair access 
to these decarbonization technologies. For example, low-income areas frequently 
do not have the resources to implement AI-based CCS or smart grids, deepening 
climate inequalities. Regulatory gaps need to be closed: e.g., the OECD calls for 
standardization of AI safety protocols for critical infrastructure.

The literature emphasizes AI’s transformative role in driving carbon emission 
reduction. From enhancing CCS to supporting resilient smart grids, AI-assisted 
innovations are helping make decarbonization cheaper, faster, and more scalable. 
However, that potential will not be realized without overcoming technical, ethical, 
and policy challenges. The future of AI must emphasize energy-efficient training, 
equitable technology deployment, and strong regulatory frameworks to ensure that 
AI is a net-positive tool in the fight against climate.
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3 � AI in Carbon Emission Reduction: A Practical Framework

However, to leverage AI for decarbonization, we need a precise framework that con-
nects technology to policy, infrastructure, and ethical governance in an integrated, 
scalable approach that stakeholders are ready for and that AI has data on but aligns 
with human-economic goals. Here is a five-pillar framework to help governments, 
industries, and researchers deploy AI-powered solutions responsibly, with a focus 
on people and the planet. Figure 1 shows the sustainable decarbonization framework.

	A.	 Value of Cross-Sector Data Infrastructure

Goal: Create high-quality, interoperable data flows across energy, industry, and 
environmental systems.

Actionable steps

•	 Create consolidated data centers for carbon emissions, energy usage, and weather 
(such as national AI carbon registries).

•	 Which sectors (e.g., ISO certifications for industrial emissions reporting) allow 
data format standardization so AI can train across sectors?

•	 IoT sensors and satellite networks monitor power grids, CCS facilities, and 
renewable assets in real time.

For example, the EU’s Destination Earth uses AI to simulate climate and energy 
systems and consolidate data from 100+ sources to optimize emission pathways.

	B.	 Strategies Unique to a Domain Driven by AI

Goal: Customize AI solutions for high-impact sectors.
Carbon capture and storage (CCS).

Fig. 1  Sustainable decarbonization framework (Source: Authors’ conception)
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AI material discovery

•	 Generate low-energy solvents and membranes for CO₂ capture (e.g., DeepMind’s 
AlphaFold and an adapted molecular modeling).

•	 Process optimization: Enable capture systems to dynamically change per crude 
oil-corrected emissions and energy prices.

•	 Storage risk mitigation: Use CNNs trained on geological data to assess CO₂ leak-
age risk from geological storage sites.

	C.	 Integration of Renewable Energy

Goal: Use hybrid AI-physical models to predict solar/wind output at the hour 
level to decrease dependency on fossil fuel backups.

Grid-all over again optimization

•	 Use GNNs to balance renewable supply with demand, emphasizing low-
carbon supply.

•	 Maintenance automation—AI-powered drones perform predictive maintenance 
on wind turbines and solar farms, reducing downtime by 30%.

	D.	 Smart Grid Management

•	 Demand-response systems: Implement AI-enabled time-of-use tariffs that incen-
tivize consumers to use energy when it is abundant (e.g., OhmConnect’s residen-
tial programs).

•	 Self-healing grids: Implement AI to identify malfunctions and redirect power 
automatically.

•	 Vehicle-to-grid (V2G) networks: Use RL to manage EVs’ charging/discharging 
and make fleets of large batteries (e.g., commercial V2G platforms by Nuvve).

	E.	 Policy and Funding Mechanisms

Goal: Set enabling environments for AI adoption.
Actionable steps

•	 Support AI R&D in climate tech through tax credits (e.g., US Inflation Reduction 
Act B for CCS innovation).

•	 AI solutions must be included in national climate pledges (NDCs) and grid mod-
ernization plans.

•	 Encourage public–private partnerships (PPPs) to share risks, such as the UK’s AI 
for Decarbonization program, which BP and government grants co-funded.

	F.	 Ethical Governance, Equitable, and Inclusive

Goal: Make sure AI solutions are inclusive and transparent.
Actionable steps

•	 Audit AI algorithms for bias (e.g., favoring high-income regions for grid 
upgrades), using frameworks such as IBM’s Fairness 360 Toolkit.

•	 Focus your AI deployments on marginalized communities with no access to 
clean energy (such as solar microgrids in Sub-Saharan Africa).
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Open-source AI models will democratize access, as in Google’s Carbon Sense 
Suite to track emissions.

	G.	 The Importance of Capacity Building and Monitoring

Goal: Develop technical skills, as well as monitor them.
Actionable steps

•	 Upskill AI and climate science workforce through partnerships (e.g., Microsoft’s 
AI for Earth academies).

•	 Set KPIs to measure AI impact: The tons of CO₂ abated per algorithm or the cost 
per MWh of renewable energy optimized.

•	 Create independent review boards to evaluate the environmental effectiveness of 
AI systems (e.g., EU’s proposed AI Climate Impact Council).

3.1 � Implementation Roadmap

	a.	 Pilot phase (years 1–2): Systematically test AI models in controlled environ-
ments (e.g., single CCS plant or city grid).

	b.	 Middle phase: National—Scale up (years 3–5) regional expansion, enabling 
reforms and PPPs.

	c.	 Global integration (years 6–10): Connect national systems through AI-enabled 
carbon markets and transcontinental smart grids.

This framework connects AI’s theoretical potential to real-world impact and pro-
vides a rapid, equitable decarbonization roadmap. By harmonizing data, technol-
ogy, policy, and ethics, stakeholders can position AI to work not as a buzzword but 
as a means to realize net-zero objectives.

4 � Implication

Regarding how to implement AI to spare the world the carbon footprint, the sug-
gested structure ends up being a make-or-break moment in battling environmental 
change. It weaves technological advances with policy, ethics, and equity to deliver 
a comprehensive roadmap for rapid decarbonization. Here, we explore its implica-
tions in four dimensions: theoretical, practical, social, and sustainable, emphasizing 
its transformative potential and the hurdles to overcome.
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4.1 � Theoretical Implications

The framework’s interdisciplinary approach resists siloed thinking and integrates 
AI, climate science, economics, and ethics into a single model.

That framework formalizes climate informatics as a critical field in which AI 
handles enormous datasets to model complex systems of the Earth. AI-driven car-
bon registries can further be seen in light of systems theory, according to which 
emissions are not viewed as individual outputs but as interconnected variables. 
Generative AI for solvent design broadens materials science to simulate molecular 
interactions at unprecedented scales, enabling discovery at a rate well beyond tradi-
tional trial-and-error approaches.

�Rethinking Decarbonization Timelines

The framework counters incremental decarbonization models by casting AI as a 
catalyst, not just a tool. Renewables predictive analytics and self-healing grids fit 
with resilience theory, which is focused on flexibility and dynamic shifting into a 
new variable state, necessary under climate destabilization. Instead, this reconcep-
tualizes net-zero pathways away from linear projections to adaptive, real-time 
processes.

�Ethical AI Theory in Practice

The framework operationalizes ethical AI theory by defining bias audits (Pillar 4) 
and fair deployment. It answers calls for “climate justice by design” to prioritize the 
needs of marginalized communities in AI-facilitated energy transitions.

4.2 � Practical Implications: Scalability, Efficiency, 
and Real-World Problems

AI-enabled CCS optimization (Pillar 2A) could cut global capture costs in half by 
2030 (Global CCS Institute, 2023) and make CCS for steel and cement possible. 
Just like AI-based predictive maintenance (Pillar 2B) reduces downtime of renew-
able infrastructure—this leads to 30 percent efficiency gain in Siemens Gamesa. 
Still others, particularly in developing countries, face high up-front costs for the IoT 
sensors and computing infrastructure.
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�Alignment of Policy and Institutions

The framework’s focus on public–private partnerships (Pillar 3) mirrors successful 
programs, such as the UK’s AI for Decarbonization program. However, conflicting 
regulations, including data privacy laws in the EU compared with laxer standards 
elsewhere, could splinter global efforts. In order to broadcast and be functional at 
scale, harmonizing policies (Proposal Pillar 1) via ISO certifications is crucial.

�Workforce Transformation

Capacity-building initiatives (Pillar 5): Initiatives build skills for the “green skills 
gap,” but AI’s capacity to automate work threatens fossil fuel workers. For example, 
Microsoft’s AI for Earth academies should prioritize strategies for a just transition, 
upskilling employees for AI oversight and grid management roles.

4.3 � Societal Implications: Equity, Trust, 
and Public Participation

The framework for social impact of the framework is equity, transparency, and com-
munity participation. AI deployment in marginalized regions like solar microgrids 
in Sub-Saharan Africa (Pillar 4) could democratize access to this key ingredient of 
energy. However, algorithmic bias threatens to compound inequalities. AI semi-
automated grid repairs might favor denser urban areas over rural terrain, for exam-
ple, simply because of data density differences. IBM tackles this problem with its 
Fairness 360 Toolkit—a bias mitigation model—but approaching the question from 
the ground up is just as important if solutions are to address local needs.

�Building Public Trust

AI’s “black box” nature breeds distrust, especially in communities long neglected 
by technology. Transparent AI models like open-source platforms or Google’s 
Carbon Sense Suite can foster trust (Pillar 4). Community consultations must be 
integrated into pilot projects (Roadmap Phase 1), like Oregon’s AI-powered wildfire 
prediction initiatives, which mitigated pushback through participatory design.
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�Ethical Dilemmas and Privacy of Data

AI depends on consumer data for many in Pillar 2C, raising privacy issues. Achieving 
a balance between detailed energy-tracking and individual rights depends upon 
strong governance, such as the EU’s GDPR-compliant anonymization protocols.

The ultimate test of the framework is whether it can achieve lasting decarboniza-
tion and avoid unintended consequences.

�Positive Environmental Net-Positive Environmental Impact

The efficiency gains from AI must exceed its carbon cost. Training large models, 
like GPT-3, produces ~500 tons of CO₂, but renewable-powered data centers (e.g., 
Google’s 24/7 carbon-free energy pledge) can address this. Integrating a circular 
economy—for example, recycling rare-earth metals from AI hardware—is crucial 
to avoid resource depletion.

�Durability of Decarbonization

Real-time adaptability to climate shifts keeps AI systems effective. For instance, 
Denmark’s self-healing grids (Pillar 2C) remained stable through the record heat-
waves in 2022, thus preventing blackouts. However, heavy dependence on AI leads 
to complacency—and human oversight is needed to tackle edge cases, like extreme 
weather that has never before been encountered.

�Economic Resilience

The framework can save the global economy $12 trillion by 2050 by lowering 
renewable energy costs. Nevertheless, when AI becomes concentrated—think pro-
prietary algorithms owned by tech behemoths—that could hamstring competition. 
Creating open-source models (Pillar 4) and enforcing antitrust regulations is crucial 
to ensure inclusive growth.

The implications of the framework show both transformative potential and 
nuanced challenges. Theoretically, it makes progress in interdisciplinary climate 
science; practically, it requires institutional coordination and investment. It begs for 
equity and accountability, lest it reinforce inequalities, and from another perspec-
tive, it needs lifecycle observance to mitigate its footprint. The key to success lies in 
framing AI as a piece of a bigger puzzle that includes technology, policy, and ethics, 
rather than as a standalone solution. Future iterations should work on best prac-
tices—applied pilot results can continue to improve algorithms and policies—and 
cooperation across jurisdictions will help align norms and spread innovations. 
Moreover, this framework can transform from a conceptual blueprint into a bedrock 
of planetary resilience through this process.
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5 � Conclusion

The climate crisis requires sweeping innovation—ideas that will cut greenhouse gas 
emissions and create a path to an Earth in balance. In this chapter, we have exam-
ined the transformative opportunities that AI can present in expediting decarboniza-
tion in three key areas: carbon capture and storage (CCS), renewable energy 
optimization, and intelligent grid management. Aggregating insights from peer-
reviewed research and interviews with leading experts shows that far from being a 
simple add-on, AI is an essential part of a modern climate change toolbox that many 
believe could redefine the speed and scale of emission reductions.

In carbon capture and storage, machine learning breakthroughs are knocking 
down decades-old barriers of cost and inefficiency. Dozens of ML algorithms are 
being trained on missing solvent designs and capture processes, and have decreased 
energy consumption by as much as 40% in pilot projects. What are the most exciting 
technological developments that you think have the potential to revolutionize the 
sector, for example, predictive models to enable geological storage site selection 
more safely and at a larger scale or autonomous monitoring systems to demonstrate 
whether CO₂ remains safe and sound in the ground? Validated by organizations such 
as MIT and the Global CCS Institute, these innovations collectively confirm AI’s 
potential to pivot CCS from a niche technology into a global deployable solution, 
which is critical for hard-to-abate industries like cement and steel production.

AI’s predictive and adaptive capabilities are revolutionizing renewable energy 
systems, which have been limited by intermittency and grid instability. Sophisticated 
neural networks now predict solar and wind outputs far more than 90 percent of the 
time, allowing grid operators to mix renewables smoothly. Case studies from 
Google’s DeepMind and Siemens Gamesa further demonstrate how AI optimizes 
turbine performance and arrangements in solar farms, increasing energy yield by 
20–35%. And AI optimizes distributed energy resources, enabling the growth of 
decentralized grids and resilience at the local level. The developments not only 
improve the reliability of renewables but also make them affordable compared to 
fossil fuels, which is consistent with IRENA’s predictions of $12 trillion in savings 
to be realized by 2050.

Innovative grid management is a prominent example of how AI can foster agile, 
responsive energy systems. Data analytics in real time balances supply and demand, 
reduces losses in transmission, and improves cybersecurity. Texas’s AI-driven 
demand-response programs and Denmark’s self-healing grids are examples of mea-
surable emission reductions and grid reliability. Additionally, AI-powered smart 
meters and vehicle-to-grid (V2G) technologies transform consumers into active 
players in energy markets, creating equitable access to clean energy, and promoting 
behavioral changes toward sustainability.

AI, however, faces challenges when deployed in climate action. AI training’s 
energy-hungry nature creates a contradiction: It requires data centers powered by 
renewable energy and algorithms that will not suck up all the power. Governance 
frameworks that include guidelines for addressing issues around data privacy and 
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algorithmic bias are necessary to ensure equitable benefits. Communities on the 
margins must be prioritized as they are frequently left behind when the technologi-
cal tide rises, and not doing so would worsen climate inequality. In addition, to 
ensure that this is a successful endeavor and that newcomers are empowered, poli-
cymakers, researchers, and industry leaders should work together to create common 
standards for transparency, data sharing, and inclusive innovation.

Forward-looking, the potential for scaling AI-based solutions relies heavily on 
interdisciplinary collaboration and ongoing investment. Policies like the US 
Inflation Reduction Act can help spur public–private partnerships, accelerating 
R&D and deployment. By making tools freely available through initiatives like 
energy simulation models and capacity-building initiatives like machine learning 
accelerators, global participants in the energy transition will be enabled to democ-
ratize participation. The need for adaptable systems will become indispensable as 
climate variability predicts increased extremes.

AI is a game changer in humanity’s pathway to decarbonization. It closes the gap 
between aspirational climate goals and actionable solutions through efficiency 
gains, cost reductions, and systemic adaptability. There are challenges ahead, but 
they add that the net-zero pathway is feasible and inclusive through AI, good gover-
nance, and fair practices. With the urgency of the climate crisis, there is not the 
luxury of complacency—leveraging all that AI has to offer is not merely an oppor-
tunity but truly an imperative for planetary survival.
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1 � Introduction

The twenty-first century has emerged into an age characterized by unparalleled 
environmental dilemmas. The ongoing global temperature increase, the loss of bio-
diversity, the exhaustion of natural resources, and pollution are some of the reasons 
our planet’s health is at risk, and urgent, systemic solutions are required (Das, 2020). 
The Intergovernmental Panel on Climate Change (IPCC) highlights the potential for 
global temperatures to cross the 1.5 °C threshold by 2030, which could lead to the 
crossing of irreversible ecological tipping points (Das, 2023). In parallel, conven-
tional sustainability paradigms (top-down centralized institutions, fragmented poli-
cies, and opaque market mechanisms) have failed to be a deployable strategy for 
scalable efficacy. Greenwashing,   bureaucratic inertia, and misaligned economic 
incentives mean that public trust in conventional approaches to environmental gov-
ernance has eroded (Borgia et al., 2024). Within this context, blockchain and artifi-
cial  intelligence (AI) are converging to become a transformative force, enabling 
decentralized, transparent, and data-driven avenues to reimagine sustainability (Das 
et al., 2024b). In this chapter, we will discuss how such technologies could facilitate 
the development of a decentralized green economy that seeks to balance ecological 
integrity with economic equity by developing new energy systems, supply chains, 
and carbon markets.
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1.1 � The Limits of a Centralized Sustainability

For decades, sustainability initiatives have been top-down frameworks (Das et al., 
2024a). Governments impose carbon taxes, corporations implement ESG 
(Environmental, Social, and Governance) reporting, and international organizations 
such as the United Nations facilitate climate agreements (Das et  al., 2023). 
Nevertheless, these efforts frequently fall short because of systemic failures. 
Centralized energy grids, for example, are still reliant on fossil fuels (Di Virgilio & 
Das, 2023a), with the systems for renewables caught in the crosshairs between leg-
acy infrastructure and monopolistic utility companies (Di Virgilio & Das, 2023b). 
However, the carbon markets made to give the right emission incentives have been 
defrauded with double counting and other manipulation mechanisms, while lacking 
transparency (Shi et al., 2022). Some supply chains—essential to realizing circular 
economies—lack transparency (Majerova & Das, 2023a); consumers and regulators 
cannot easily verify ethical sourcing or carbon neutrality claims (Majerova & 
Das, 2023b).

These difficulties point to more systemic problems:

	(a)	 Trust deficits: People trust centralized authorities—governments, corporations, 
NGOs—less, not more, to act in the public interest (Prats et al., 2023).

	(b)	 Bureaucratic hold-ups hinder the roll-out of green technologies and climate 
finance.

	(c)	 Misaligned incentives: Profit-driven models prioritize short-term goals over 
long-term ecological health (Mondal, 2020).

Such shortfalls whitewash a more significant shift we must make in the block-
chain paradigm—a pivot to decentralized (Mondal et al., 2023a, 2023b). These dis-
tributed systems would empower communities, increase accountability for corporate 
behavior, and align private economic rewards with the planet’s health (Mondal 
et al., 2024).

1.2 � Building Up Revolutionary Synergy Between 
Blockchain and AI

Although fundamentally different in their technical architectures, blockchain and 
AI share a common ethos—decentralization (Mondal & Das, 2023a). Blockchain is 
one distributed ledger technology (DLT) type that allows peer-to-peer transactions 
without intermediaries to be extended through consensus algorithms for verification 
(Mondal & Das, 2023b). Its unique characteristics, immutability, transparency, and 
cryptography-based security, make it suitable for applications demanding trustless 
collaboration (Mondal & Das, 2023c), such as carbon credit trade or renewable 
energy certificate (Saraji, 2023). In contrast, data and AI use machine learning, neu-
ral networks, and big data analytics to enhance decision-making (Mondal et  al., 
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2022). From predicting energy needs to identifying deforestation in satellite images 
(Mondal et al., 2023a, 2023b), AI’s ability to handle large datasets almost instanta-
neously complements blockchain to capture and communicate data securely 
(Mondal & Sahoo, 2019).

Collectively, these technologies fill important sustainability gaps:

	(a)	 Democratization: This blockchain decentralizes entry to inexperienced finance 
and it permits small-scale producers to access carbon markets or sell renew-
able power.

	(b)	 Transparency: Supply chains become traceable from source to consumer; 
blockchain records every transaction, and AI identifies culpability.

AI optimizes resource allocation in energy grids,   and blockchain automates 
transactions through smart contracts. This is not a mere theoretical synergy. Practical 
examples in DLT, such as Power Ledger, a blockchain-empowered Australian plat-
form used to trade solar energy credit directly between peers in a workflow called 
prosumer–prosumers, and IBM’s Food Trust, which maps supply chains within and 
across the sectors of agriculture using DLT (Sadeghi et al., 2021), show that such 
tools have the possibility of being applied in reality. Similarly, regarding agricul-
ture, platforms powered by artificial intelligence, such as ClimateAi, leverage pre-
dictive modeling to help farmers adapt to climate change, while blockchain 
initiatives, like KlimaDAO, tokenize carbon credits to improve market liquidity.

1.3 � Foundational Elements of a Decentralized Green Economy

	a.	 Decentralized Energy Grids

Centralized energy systems are poorly suited to absorb the variability of renew-
able sources, such as solar and wind (Nadanyiova & Das, 2020). Blockchain from 
the energy market using peer-to-peer energy trading allows homes to sell excess 
energy to a neighbor without the utility intermediary (Tandon & Das, 2023). One 
such initiative is the LO3 Energy project in Brooklyn, New York, which utilizes 
blockchain for microgrids, whereby participants exchange tokens for renewable 
energy (Mengelkamp et al., 2017). AI improves these systems by predicting energy 
demand, optimizing grid storage, and balancing loads—minimizing dependence on 
fossil-fuel-powered peaker plants (Vrana & Das, 2023a).

	b.	 Transparent Supply Chains

Global supply chains are responsible for more than 60% of greenhouse gas emis-
sions. Blockchain’s tamper-proof ledgers allow for end-to-end traceability,   ensur-
ing that products labeled “organic” or “fair trade” meet strict standards. For instance, 
the World Wildlife Fund (WWF) employs blockchain to monitor tuna captures in 
the Pacific, which stops illegal fishing. AI adds to this by analyzing satellite imagery 
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and Internet of Things sensor data to monitor deforestation, methane leaks, or labor 
abuses in real time (Vrana & Das, 2023b).

	c.	 Tokenized Carbon Credits

Conventional carbon markets are highly fragmented and rife with fraud. As 
blockchain allows for tokenization, carbon credits can be cryptographically passed 
onto a ledger, representing a set amount of carbon credits, which can be divided as 
fractional ownership, audited in real time, and traded globally (Yegen & Das, 2023). 
Initiatives such as Veridium Labs work with IBM to tokenize credits tied to rainfor-
est preservation (Del Castillo, 2018). AI will dynamically enhance this by pricing 
credits according to ecological impact data to provide accurate and fair markets.

	d.	 Interdisciplinary Foundations

To build a decentralized green economy requires working across disciplines:

	(1)	 Computer science: Creates environmentally friendly AI programs and scalable 
blockchain protocols (like Proof-of-Stake).

	(2)	 Econometrics: What incentive structures can we create?
	(3)	 Ecological data: Ecosystem services,   biodiversity indicators, carbon seques-

tration models.

This interdisciplinary lens transforms siloed approaches to sustainability. For 
example, blockchain’s environmental role, the intersection with behavioral eco-
nomics that spurs pro-environmental behavior, and the ecological data AI climate 
models are based upon to forecast regional effects.

	e.	 Challenges and Ethical Issues

Nevertheless, blockchain and AI are not a silver bullet despite all the hype. 
Criticism has been directed toward blockchain’s energy use—mainly in systems 
that use Proof-of-Work (PoW) methods, such as Bitcoin—as contributing to envi-
ronmental carbon footprints (Bager et al., 2022). It is arguably our top priority to 
move to low-energy consensus mechanisms (e.g., Proof-of-Stake, where applica-
ble) and renewable-powered mining. On a related note, the AI issue also concerns 
algorithmic bias,   data privacy, and centralization. A decentralized AI training 
method, federated learning is a partial solution because data is not gathered in a 
central location (Yurdem et al., 2024).

Equitable access continues to be a challenge. Marginalized communities gener-
ally have poor digital infrastructure or literacy, preventing them from accessing 
blockchain-AI systems and creating the risk of a “green divide.” Policymakers must 
also prioritize inclusive design and digital education so that these technologies can 
benefit everyone.

At the same time, AI’s ability to perform predictive analytics, optimization, and 
automation can help improve decision-making in resource allocation, climate mod-
eling, and energy grid management. These technologies collectively tackle systemic 
challenges in sustainability by democratizing access to green finance, increasing 
accountability in supply chains, and optimizing renewable energy distribution. 
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Based on insights from computer science, economics, and ecological studies, this 
chapter argues that decentralized systems can empower communities, mitigate 
administrative overhead, and align economic incentives with environmental out-
comes. By incorporating interdisciplinary perspectives, we offer a forward-thinking 
viewpoint of sustainability that emphasizes fairness, scalability, and resilience.

2 � Literature Review

The intersection of blockchain and artificial intelligence (AI) is an essential research 
field in sustainability, bridging environmental governance, green finance, and 
decentralized systems. The review summarizes prior work regarding blockchain 
and AI as drivers of a decentralized green economy across three central dimensions: 
decentralized energy networks, transparent supply chains, and tokenized carbon 
credits. It also studies the synergies and challenges of merging these technologies.

2.1 � Blockchain in Sustainability

The decentralized, transparent, and immutable ledgering system of blockchain has 
gained extensive attention for its potential to alleviate trust deficits in environmental 
governance. Nakamoto introduced blockchain as a “trustless” system that became a 
foundation for thousands of blockchain use cases, the most famous of which is 
cryptocurrency. It is also widely applied to renewable energy trading, supply chain 
traceability, etc.

Decentralized Energy Grids
In the case of blockchain, peers can exchange their P2P energy with each other 
without intermediaries, meaning prosumers (producers and consumers) can trade 
excess renewable energy with others. Andoni et al. (2018) point out that blockchain 
decreases transmission losses and democratizes access to energy markets by 
enabling small-scale solar producers to become part of the market. The Brooklyn 
Microgrid project is an excellent case study showcasing the use of blockchain to 
develop resilient, distributed energy governance structures (Mengelkamp et  al., 
2017). Nonetheless, challenges such as scalability and the energy barrier of consen-
sus algorithms like Proof-of-Work (PoW) remain. For example, Truby (2018), 
drawing attention to Bitcoin’s energy consumption, argues in favor of alternatives 
such as Proof-of-Stake.

Transparent Supply Chains
Blockchain’s tamper-proof, automated record-keeping allows supply chain trans-
parency necessary to substantiate sustainability claims. Friedman and Ormiston 
(2021) propose that blockchain can reduce greenwashing by offering immutable 
records of the source of products, labor practices, and carbon footprints. IBM’s 
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Food Trust blockchain tracks agricultural products from farm to shelf, reducing 
fraud (Li et al., 2023). However, implementation challenges include interoperability 
between disparate systems and the cost of IoT integration for real-time data collec-
tion (Li et al., 2023).

Tokenized Carbon Credits
Carbon credit tokenization via blockchain converts physical carbon credits into 
digital tokens that can be traded with open market efficiencies. Tokenization mini-
mizes double counting and increases liquidity through fractional ownership (Tanveer 
et al., 2025). Several blockchain-based carbon markets have been established (e.g., 
KlimaDAO, Toucan Protocol). However, some challenges, such as regulatory uncer-
tainty and lack of unified frameworks for valuation, remain unsolved (Ibiyeye 
et al., 2024).

2.2 � AI in Sustainability

The capacity of AI to analyze, predict, and automate makes it potentially transfor-
mative in the field of sustainability. ML and neural networks optimally allocate 
scarce resources, detect environmental violations, and model climate scenarios.

Energy Systems Optimization
AI facilitates the integration of renewable energy sources by forecasting consump-
tion trends and optimizing grid management. Chaaban and Alfadl’s (2024) machine 
learning models improve the reliability of forecasts for solar and wind generation, 
reducing dependence on fossil-fuel backups. Vázquez-Canteli and Nagy (2018) 
optimize with reinforcement learning algorithms and dynamically adjust loads on 
the grid to minimize waste. However, the dependence of AI on high-quality data and 
computational power raises concerns about accessibility and energy consumption 
(Arora et al. 2023).

Environmental Monitoring
Analytics of satellite images and IoT sensor AI-based tools is used to detect ecologi-
cal violations in real time. Olawade et al. (2024) discuss how AI is used to monitor 
illegal deforestation in the Amazon, and how Alibaba’s ET Brain platform has been 
able to track the sources of water pollution along China’s rivers. However,   account-
ability rests on algorithmic biases and “black-box” decision-making processes 
(Kumar et al., 2024). Federated learning has potential in addressing data privacy 
issues, as it can decentralize and train the AI system individually on each personal 
device without compromising data privacy by sending raw data to a central  server 
(Mohammadi et al., 2024).

Climate Modeling
Atmospheric sensors and historical record data make it possible to analyze their 
patterns using AI to speed up climate prediction. Machine learning (ML) models 
have also been used to simulate complex climate systems, helping to support 
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scientists and policy agendas in designing specific means for mitigating these con-
cerns (Rolnick et al., 2022). Yet, predictive but non-interpretative AI-driven models 
do not easily lend themselves to adoption in policy (Medina-Ortiz et al., 2024).

2.3 � The Convergence of Blockchain and AI

The synergy between blockchain and AI offers joint value creation opportunities, 
but interdisciplinary research at the intersection point of this convergence is still in 
its infancy.

Data Integrity and Automation
This ensures that datasets used to train AI models are tamper-proof and reduces the 
risk of bias. Zhang et al. (2021) present blockchain-based solutions, where AI algo-
rithms consort with verified environmental data from decentralized sources. Smart 
contracts using the Ethereum platform, for example, can automate the issuance of 
carbon credits contingent on AI-verified emissions data (Wang et al., 2021).

Decentralized AI Governance
Decentralized autonomous organizations (DAOs) based on blockchain can govern 
AI systems transparently. Hileman and Rauchs (2017) emphasize that DAOs could 
democratize the decision-making process in green finance, for example, by distrib-
uting funds for climate projects through community voting. However, DAOs have 
faced legal and technical hurdles, such as regulatory uncertainty and vulnerabilities 
in smart contracts (Zetzsche et al., 2017).

Despite blockchain and AI’s sustainability advantages, their joint environmental 
impact—including energy-hungry AI training and PoW blockchains—creates ethi-
cal conundrums. Prominent academics argue for energy-efficient algorithms  (such 
as TinyML) and renewable-powered blockchain networks as forms of “green AI” 
practices (Mulligan et al., 2023).

2.4 � Gaps in the Literature

	(a)	 Integration of different disciplines: Most existing literature concentrates on iso-
lated applications of either blockchain or AI, without considering the systemic 
framework that can integrate both strategies (Hileman & Rauchs, 2017).

	(b)	 Equity and access: Limited research addresses the potential for marginalized 
communities to participate in decentralized systems, which risks a “sustainabil-
ity divide” (Sevelius et al., 2020).

	(c)	 Novel forms and structures, digital assets—While data-driven AI is common-
place, the legal implications of tokenized assets and AI governance remain pri-
marily disjointed (Rodrigues, 2020).
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Extensive work has been done using blockchain and AI to help create decentral-
ized sustainable solutions. Realizing this vision, though, requires overcoming tech-
nical, ethical, and regulatory hurdles and promoting cross-cutting, intersectoral 
interdisciplinary research and innovation. The following section outlines a frame-
work for putting this into action.

3 � Practical Framework

Our Decentralized Green Economy Framework (DGEF) enables you to put tangible 
sustainable systems in place, from energy, to supply chains, carbon markets, and 
governance by integrating blockchain and AI.  Scalable and inclusive by design, 
DGEF encourages interoperability, incentive alignment, and community participa-
tion. Here is a breakdown of its core components and pathways for implementation, 
step by step.

3.1 � Decentralized Energy Systems

Objective: Decentralized renewable energy grids powered by communities instead 
of fossil fuels.

Blockchain Layer
	(a)	 Peer-to-peer (P2P) trading: Blockchain platforms (Ethereum and Hyperledger) 

use smart contracts for automated energy trading. Prosumer—A prosumer sells 
excess solar/wind energy to neighbors by passing utilities.

	(b)	 Tokenized energy certificates issue renewable energy certificates (RECs) as 
non-fungible tokens (NFT) to verify the percentage of clean energy generation 
and ownership.

AI Layer
	(a)	 Demand forecasting: Training ML models on historical data on weather and 

consumption data to predict generation and optimize storage.
	(b)	 Grid balancing: You can use reinforcement learning to dynamically adjust the 

energy distribution, minimizing waste during peak/off-peak cycles.

Implementation
	(a)	 Partner with the municipalities to pilot microgrids (think Brooklyn 

Microgrid model).
	(b)	 Engage with IoT smart meters for real-time data capture.
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3.2 � Transparent Supply Chains

Objective: We hope to achieve end-to-end traceability and ensure ethical sourcing.

Blockchain Layer
	(a)	 Immutable ledgers: Store every step of the supply chain (e.g., raw material 

extraction, manufacturing, logistics) on permissioned blockchains (e.g., 
VeChain).

	(b)	 QR code authentication: Customers can scan products for blockchain-verified 
sustainability credentials.

AI Layer

	(a)	 Anomaly detection: You could use computer vision algorithms to flag satellite 
images of illegal deforestation or pollution.

	(b)	 Predictive analytics: What: Train an ML model to predict supply chain risks 
(disruption from extreme weather, etc.).

Implementation
	(a)	 Develop systems to adapt blockchain-IoT systems from industries (e.g., agri-

culture,   fashion) and publish case studies.
	(b)	 Beyond meat partners with NGOs (e.g., WWF) to audit high-risk supply chains 

(e.g., palm oil, cobalt).

3.3 � Tokenized Carbon Markets

Objective:   Accessible carbon credits and transparent market.

Blockchain Layer
	(a)	 Tokenization of carbon credits: Carbon offsets can be fractionalized and con-

verted into tokens (ERC-20 tokens on the Polygon/Solana blockchains).
	(b)	 Smart contract audits: You can verify carbon sequestration projects  (like refor-

estation) via oracles providing real-time data.

AI Layer
	(a)	 Dynamic pricing: Use real-time ecological impact data (e.g., satellite-measured 

forest growth) to help ML models adjust token prices on demand.
	(b)	 Fraud detection: Apply  natural language processing (NLP) to analyze project 

documentation for greenwashing.

Implementation
	(a)	 Collaborate with carbon registries (e.g., Verra) to  tokenize verified credits.
	(b)	 ETH for  trade on DEXs for tokenized credits.
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3.4 � Decentralized Governance

Objective: Encourage participatory decision-making in sustainability initiatives.

Blockchain Layer
	(a)	 DAOs for resources management: Create DAOs for community-managed fund 

management (for instance, green bonds) by token-based voting.
	(b)	 Reputation systems: Distribute tokens to stakeholders (e.g., recyclers, renew-

able adopters) based on sustainable behavior.

AI Layer
	(a)	 Consensus algorithms: Leverage  AI for better DAO voting systems (like qua-

dratic voting for fair power distribution).
	(b)	 Risk simulation: For example, modeling climate risks such as sea-level rise so 

that investments in infrastructure are tailored well.

Implementation
	(a)	 Test  DAO-centric initiatives in highly engaged cities (e.g., Seoul, Barcelona).
	(b)	 Incentivize public participation through gamified apps  (e.g., are rewards 

(tokens) for recycling the hero).

3.5 � Cross-Cutting Enablers

	(a)	 Interoperability: Create cross-chain bridges (e.g., Polkadot) to connect energy, 
supply chain, and carbon credit systems.

	(b)	 Structure bodies around performance: Organize entities that can be more flexi-
ble around activity, such as building on Proof-of-Stake energy-efficient consen-
sus blocks.

	(c)	 Train up members of marginalized communities with digital literacy and the 
Internet of Things.

3.6 � Implementation Roadmap

	(a)	 Pilot testing: Run sector-specific pilots  (i.e., a solar-powered microgrid in a 
rural community).

	(b)	 Regulatory engagement: Partner with regulators to develop tokenized asset 
standards and AI accountability.

	(c)	 Scalability: Use modular blockchain architectures like Cosmos for horizontal 
scalability across regions.

The DGEF is a working model that can integrate the transparency of blockchain 
with the verification capacity of AI systems, and stand as a counter to enduring 
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Fig. 1  Components of decentralized green economy framework (Source: Authors’ conception)

systemic limitations around sustainability. This framework fosters interoperability, 
community ownership, and ethical tech design that can guide stakeholders to build 
a decentralized green economy that is resilient and equitable, so that we can lever-
age the power of maps and data to consolidate our voice and our power as commu-
nity, to democratize the process  of designing our environment, our economy, and 
our way of life. Figure 1 represents the decentralized green economy framework.

4 � Theoretical, Practical, Social, and Sustainable Implications

The merging of blockchain and AI into sustainability, framed by the Decentralized 
Green Economy Framework (DGEF), has far-reaching theoretical, practical, social, 
and sustainable implications. Living at the intersection of decentralizing technol-
ogy, ecological regeneration, and economic resilience will be transformative for 
both social and natural environments, but it also brings major implications 
worth noting.

4.1 � Theoretical Implications

The DGEF questions fundamental paradigms in environmental governance and 
economic theory, and provides new ways to look at challenges that lend themselves 
to interdisciplinary inquiry:
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Ecological Economics
This framework links ecological  economics to decentralized technologies by 
tokenizing natural capital (e.g., carbon credits, clean energy) and scaling market 
incentives to meet the planetary boundary (Narayan & Tidström, 2020). This chal-
lenges neoclassical models that treat ecosystems as externalities, rather than embed-
ding ecological value into transactional systems.

Polycentric Governance
Blockchain-based decentralized autonomous organizations (DAOs) implement 
Elinor Ostrom’s theory of polycentric governance, in which multiple stakeholders 
jointly govern the use of shared resources (Santana & Albareda, 2022). DGEF out-
lines a path for self-governing communities to deploy green finance and enforce 
sustainability rules without centralized monitoring.

Trust and Transparency
Both blockchain’s immutability and data-driven accountability from AI are recast-
ing the role of trust in socio-technical systems. This challenges the principal-agent 
theory because it reduces reliance on intermediaries (e.g., regulators, auditors) and 
trust remediated to algorithmic transparency (Han et al., 2022).

Technological Convergence
The convergence of blockchain and AI creates new theoretical concepts, like 
AI-augmented smart contracts and tokenized ecological goods, requiring interdisci-
plinary exploration across disciplines like computer science, economics, and envi-
ronmental ethics.

4.2 � Practical Implications

We need the DGEF to be operationalized  but, but it will be important to resolve the 
technical challenges, any regulatory issues, and the operational challenges while 
harnessing the actionable opportunities:

Energy Systems
Decentralized energy grids lower the dependence on fossil fuels but require 
enhanced grid infrastructure and IoT connectivity. Utilities must embrace block-
chain platforms by leveraging existing blockchain data as a consortium or nonprofit 
organization, for example, Energy Web Chain, which commercializes machine 
learning on home sensor data analytics for renewable forecasting. Demonstration 
projects, including Australia’s Power Ledger, prove the concept, but scale-up needs 
public–private partnerships.

Supply Chains
Blockchain’s traceability can eradicate $900 billion of yearly losses from fake prod-
ucts, and using AI to automate audits reduces costs in attaining compliance. 
However, the industries have upfront costs for the IoT sensors and retraining the 
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workforce. Nestlé and Unilever are leading the way in blockchain supply chains, but 
interoperability standards are still siloed.

Carbon Markets
Tokenization enables equal access to carbon credits for smallholders (e.g., Global 
South farmers) by capturing market value and protecting it from externalities 
through regulations that clarify market manipulation rules. Organizations, like the 
Toucan Protocol, will have to work with registries (e.g., Verra) to ensure tokenized 
credits are of an international standard.

Governance
DAOs provide participatory decision-making but need legal recognition for enforce-
ability of binding agreements. Pioneering DAO legislations in jurisdictions such as 
Wyoming and Switzerland are in place, but there is no harmonized solution now 
(Cheng, 2025).

4.3 � Social Implications

The DGEF’s decentralized ethos empowers communities but could prove the vector 
for exacerbating inequalities without inclusive design:

Empowerment vs Exclusion
Blockchain and AI can democratize green finance—for example, slum dwellers can 
trade solar energy tokens—but marginalized groups usually lack digital literacy or 
Internet access (Ren et al., 2023). A 2023 UN report states that 37% of the global 
population is still not online, facing a “sustainability divide” (Kalaiarasi & 
Kirubahari, 2023). This can be realized with subsidized infrastructure and 
community-led innovation programs.

Labor and Equity
Reskilling initiatives must be instituted as low-skilled workers will be replaced by 
AI-driven automation in supply chains. In contrast, decentralized systems generate 
high-quality jobs in tech maintenance (e.g., blockchain node operators) and green 
sectors (e.g., renewable energy technicians).

Ethical Risks
AI algorithms that learn from biased datasets may end up unduly punishing vulner-
able communities—for example, mistaking subsistence farmers for illegal loggers. 
Federated learning and participatory AI design are examples of approaches that can 
reduce these risks (Min, 2023).

Cultural Shifts
Public support is necessary for transitioning to decentralized systems. Gamification 
(e.g., token rewards for recycling) and grassroots campaigns, such as citizen-led 
energy cooperatives in Barcelona, can drive behavioral change.
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4.4 � Sustainable Implications

As such, while DGEF is designed to further sustainability, its environmental impact 
and long-term effect on such remains a cause for consideration:

Emission Reductions
Eliminating inefficiencies in transparent supply chains may reduce CO₂ emissions 
by 1.5 gigatons a year. Decentralized energy grids reduce transmission losses by 
15–20% and expedite renewable adoption (Andoni et al., 2018).

Tech-Driven Footprints
The energy footprint of blockchain is still contested. Bitcoin’s PoW mechanism 
generates 65 megatons of CO₂ annually, comparable to Greece’s total emissions. 
The transition to PoS blockchains (e.g., Ethereum 2.0) and the deployment of AI to 
optimize mining operations can address this.

Circular Economy
Such tokenized asset systems incentivize circular practices, such as paying consum-
ers for plastic waste recycling through token payouts. Nevertheless, e-waste gener-
ated from old blockchain/AI hardware can cause havoc. Legislation requires 
producers to be responsible for recycling tech.

Resilience and Adaptation
Climate models augmented with AI help people prepare for severe weather, yet 
overdependence on predictive systems leaves other vulnerabilities. Hybrid 
approaches, integrating AI with Indigenous ecological knowledge, can also enhance 
adaptive capacity (Camps-Valls et al., 2025).

Long-Term Viability
Success of the DGEF depends on the scalability of renewable projects. For example, 
training massive AI models on fossil-fueled grids erodes sustainability progress. 
Examples like “Green AI,” in which Google operationalizes carbon-neutral data 
centers, are precedent-setting for ethical deployment (Olabi et al., 2023).

The DGEF’s implications suggest a hazy view of promise and caution. 
Theoretically, it remaps governance and economic models; practically, it requires 
cross-sectoral collaboration; socially, it weighs empowerment against the risk of 
inequality; and sustainably, it provides emissions-reduction tools while wrestling 
with its environmental footprint. Iterative policymaking, ethical tech design, and 
innovative participation structures are vital to ensure decentralized systems become 
drivers—not barriers—to build a transformative, socially just green transition.

5 � Conclusion

Blockchain technology is a digitalized ledger that efficiently addresses numerous 
issues, like security,   accessibility, and efficiency. At the same time, AI (artificial 
intelligence) is based on deep learning of systems that optimizes human resources. 
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This chapter shows that these two technologies can be contingently integrated into 
a Decentralized Green Economy Framework (DGEF) that reframes sustainability 
through transparency, equity, and participatory systems. Through decentralized 
energy grids, tokenized carbon credits, and supply chain accountability, blockchain 
and AI provide the tools for communities to move away from destructive, central-
ized systems to regenerative, data-driven ecosystems.

Blockchain’s immutable ledgers and smart contracts help address trust deficits in 
green finance and governance, while AI’s predictive analytics and automation will 
optimize resource allocation and enhance climate resilience. Case studies from 
peer-to-peer solar trading in Brooklyn to AI to monitor deforestation in the Amazon 
illustrate these tools’ possible very real outcome. However, this potential comes 
with its fair share of challenges. Psychological conditioning in social media, envi-
ronmental costs of electricity-consuming blockchain protocols, algorithmic biases 
in AI, and risks of leaving out fringes of the population require ethical and policy-
level scrutiny. Preserving the data poise through this transition (transitioning to low-
power consensus mechanisms (like PoS), adopting federated learning, and 
subsidizing digital access) is essential for mitigating these risks.

The interdisciplinary marriage of the DGEF is what makes it successful. 
Computer scientists have to create scalable, energy-efficient protocols; economists 
need to design incentives that ensure profitability is aligned with planetary health; 
policymakers need to create regulatory sandboxes for tokenized assets and DAOs; 
and ecologists need to ensure AI models rest on a sound understanding of biophysi-
cal reality. Grassroots participation is just as important—decentralized systems 
work only when communities co-design and govern them.

Although blockchain and AI are not a silver bullet, their convergence is a para-
digm shift on sustainability. They invite us to think differently about economies as 
circular, democratic, and symbiotic with nature. What lies ahead requires humil-
ity—the understanding that technology alone can’t save the planet but can magnify 
human creativity and collective action. By putting equity,   accountability, and eco-
logical integrity at the center of our innovations, these tools can be used to construct 
a future in which decentralized systems empower people and Earth. The issue is not 
growth versus sustainability; it is obsolescence versus evolution.
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1 � Introduction

The world faces a crossroads over energy. Moreover, with the rapid pace of climate 
change, increasing populations,   and expanding industrialization, the need for 
dependable, affordable, and sustainable energy is stronger than ever (Borgia et al., 
2024). However, conventional power networks, dominated by fossil fuels and cen-
tralized infrastructure, are under increasing stress from aging equipment, variable 
demand, and the pressing need to cut greenhouse gas emissions (Das, 2020). 
Simultaneously, the growth of renewable energy sources, distributed generators, 
and innovative technologies has presented challenges and opportunities (Das, 2023). 
This is where artificial intelligence (AI) comes into play as a game-changing force 
in updating where plants run, optimizing materials, and linking with the broader 
energy system (Das et  al., 2024b). This chapter demonstrates just how AI-based 
solutions are revolutionizing the architecture of energy in the modern era, rendering 
the “digital power plant” more than just a fiction—it is a present reality that har-
nesses the efficiencies of digitalization while achieving sustainability and resilience 
in a digitally enabled world.
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1.1 � The Critical Case for Digital Transformation

With coal, oil, and gas-fired power plants still dominant contributors, the energy 
sector is responsible for nearly 75% of global greenhouse gas emissions (Das et al., 
2024a). At the same time, the International Energy Agency (IEA)  believes the 
growth in global electricity demand will increase to 50% by 2040, spurred by urban-
ization, electrification of transport, and digitalization (Das et al., 2023). Meeting 
this demand within net-zero targets will necessitate a wholesale rethinking of energy 
infrastructure. Legacy systems designed for predictability and stability cannot cope 
with the variability of renewable energy sources such as wind  and solar or the 
decentralized nature of modern grids (Di Virgilio & Das, 2023a). Obsolete mainte-
nance practices, reactive maintenance, and inefficient fuel use compound waste and 
emissions.

A concept combining AI, machine learning (ML), and advanced data analytics 
into all energy generation and delivery pieces revolutionizes how we produce, dis-
tribute, and consume energy by creating intelligent, selfoptimizing power systems 
(Di Virgilio & Das, 2023b). AI can also use real-time data from sensors, IoT devices, 
and the grid network to move power plants from traditional, static, and manual 
operations to dynamic, self-optimizing systems (Majerova & Das, 2023a). This 
change is not just technological but existential. We cannot move to a sustainable 
energy future without intelligent systems to balance efficiency, cost, and environ-
mental goals (Majerova & Das, 2023b).

1.2 � The Role of AI as a Catalyst for Operational Excellence

At the heart of the digital power plant is AI’s power to process large datasets and 
provide relevant insights (Mondal, 2020). Modern power plants produce terabytes 
of data daily, ranging from turbine performance metrics to fuel consumption rates 
(Mondal et al., 2023a, 2023b). That is where AI algorithms come in: they scour all 
this data to optimize operations in ways that were unimaginable just a few years ago 
(S.  Mondal et  al., 2024). An example of this would be predictive maintenance, 
where ML models predict equipment failures before they happen, leading to lower 
downtime and repair costs (Mondal & Das, 2023a). General Electric’s Power 
Services, for instance, has seen a 20% decrease in maintenance costs and a 5% 
increase in availability with the help of AI-powered diagnostics.

In a similar vein, AI improves combustion efficiency in fossil fuel plants. AI 
systems can optimize air-to-fuel ratios, turbine settings, and throttle control while 
continuously monitoring system performance and inputs to improve efficiency by 
2–4%—millions of dollars in annual savings and reduced emissions (Mondal & 
Das, 2023b). Within renewable energy, AI optimizes the solar panel’s angle or the 
wind turbine’s pitch that generates the most output depending on changing weather 
(Mondal & Das, 2023c). These incremental gains, multiplied by thousands of plants, 
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could change the energy economies of the world (Mondal et al., 2022). In addition 
to punishment, a serious offense may result in more than a year of supervision after 
release.

Power systems must balance supply and demand in real time, an undertaking 
made worse by the intermittent nature of renewables and consumers’ unpredictable 
behavior (Mondal et al., 2023a, 2023b). The Power of AI: Measuring and predicting 
demand and consumption is where AI shines. It analyzes historical patterns, weather 
conditions, and social trends to help providers accurately predict consumer needs 
(Mondal & Sahoo, 2019). Google’s DeepMind, for example, cut energy use in data 
centers by 40% once it applied neural networks to predict its cooling needs.

At a macro level, AI allows adaptive load management that dynamically redis-
tributes power across grids to prevent overloads or outages (Nadanyiova & Das, 
2020). AI can prioritize critical infrastructure during peak demand or incentivize 
consumers to scale back usage through real-time pricing schemes (Tandon & Das, 
2023). That flexibility is essential as grids transition to bidirectional networks, in 
which rooftop solar, electric cars, and battery storage drive power to and out of 
buildings. AI-enhanced smart grids could reduce CO₂ emissions worldwide by 3.6 
gigatons a year—more than 750 million cars’ worth—by 2030 (Vrana & Das, 2023a).

1.3 � Environmental Stewardship and Emissions Reduction

Decarbonizing energy production is at the core of climate targets, and AI is a strong 
ally in this effort. It uses real-time monitoring through machine learning models to 
identify inefficiencies or leaks in carbon capture systems (Vrana & Das, 2023b). For 
instance, ExxonMobil employs AI to improve its carbon capture and storage (CCS) 
functions, enabling more accurate tracking of underground CO₂ reserves. 
AI-enhanced “clean coal”   processes at coal-fired plants also reduce particulate 
matter and NOx emissions by streamlining combustion and filtration processes 
(Yegen & Das, 2023).

Furthermore, AI hastens the transition toward renewables by reducing their 
inherent unpredictability. By predicting how much solar irradiance or wind there 
will be days in advance, grid operators can rely on renewable energy more consis-
tently, and reduce reliance on fossil fuel backups. In Germany, they have AI-managed 
virtual power plants that aggregate dispersed renewable sources together to provide 
better grid stability—a scalable model for emission-free baseload power.

Climate change creates new threats—extreme weather events, cyberattacks, sup-
ply chain disruptions—that require resilient energy systems. AI enables better logis-
tics management by analyzing real-time systems, identifying issues, optimizing 
routes, and more. Moreover, AI facilitates decentralized energy systems by enabling 
microgrids and community solar projects to function independently during grid out-
ages. This democratization of energy improves resilience and aligns with global 
equity goals, providing affordable power to underserved areas.
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1.4 � Building Toward a Sustainable Future

The digital power plant is a technological advance and a paradigm shift in how 
humans produce and consume energy. Blending AI’s computational power with sus-
tainability’s urgency enables the energy sector to reach the next level of efficiency, 
drastically reducing costs and emissions and increasing reliability. However, with 
promise comes problems—data privacy, workforce adaptation, and regulatory 
frameworks.

This chapter investigates the embedding of AI within the energy economy, which 
is not a future big idea but a current revolution. From predictive analytics to self-
healing grids, AI-powered solutions set the stage for a cleaner, brighter, and more 
equitable energy future. And the digital  age demands no less.

2 � Literature Review

Artificial intelligence (AI) is today recognized as a transformative force that is 
reshaping sectors of society and the economy. This literature review summarizes the 
main challenges to the uptake of AI in power plants, including the need for opera-
tional optimization, demand forecasting, emissions reduction, adaptive grid man-
agement,   and systemic challenges. Through synthesis of contemporary studies, 
this segment identifies gaps within current research on AI and the energy landscape 
and new opportunities for intervention through design.

2.1 � Optimization and Prevention of Operations

AI’s ability to absorb real-time data and predict equipment failures has upended the 
way power plants operate. Machine learning (ML) enables predictive maintenance 
by detecting outliers in equipment operations, which can prevent breakdowns and 
avoid time losses. Sarker (2021) showed how ML models trained on tribomechani-
cal vibration data could predict simple turbine bearings failing with 92% accuracy, 
allowing coal-fired plants to save 25% on maintenance costs. Similarly, Yang et al. 
(2019) cited AI’s functionality in optimizing combustion processes, with neural net-
works that modulate fuel injection rates based on combustion feedback in real time, 
enhancing thermal efficiency by 3–5%.

Analyzing existing work, the International Energy Agency (IEA) found that 
AI-based operational improvements can reduce global energy lost by 10–20%, 
translating to 1.5 gigatons of CO₂ per year. However, issues of data quality and lack 
of interoperability remain. As D’Amore et al. (2018) noted, due to inconsistent sen-
sor calibration and siloing of data systems, AI is limited in effectiveness and requires 
standardized protocols when deploying industrial IoT.
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2.2 � Demand  Forecasting and Grid Modernization

Demand forecasting accuracy is critical for balancing supply and demand in grids 
with ever-growing variable renewables. AI models use disparate data, historical 
consumption, weather patterns, and socioeconomic trends to infer energy require-
ments. The original work by Zhang et al. (2020) showed that simple deep learning 
algorithms decreased forecasting errors by 30% compared to traditional statistical 
methods, allowing utilities to optimize generation schedules and reduce reliance on 
Peaker plants.

DeepMind, owned by Google, used reinforcement learning to predict cooling 
demands in its data centers and cut this energy use by 40% (Luo et al., 2022). This 
methodology has since been adapted for grid-scale load management. For example, 
Germany’s virtual power plants (VPPs) leverage AI to aggregate distributed solar 
and wind resources, maintaining stability in their grids without fossil fuel backups 
(Loßner et al., 2016). The US Department of Energy (DOE) states that, by 2035, 
AI-enhanced smart grids could integrate 50% more renewables, but latency in real-
time decision-making needs to be solved first.

2.3 � Reduction of Carbon Emissions and Their 
Ecological Influence

Decarbonizing electricity generation remains a centerpiece of climate policy, and 
AI plays an outsized role in emissions abatement. For example, machine learning 
models optimize carbon capture and storage (CCS) systems by monitoring subsur-
face CO₂ reservoirs and predicting the risk of leakage. Oliveira et  al.’s (2024) 
cutting-edge AI framework for ExxonMobil’s CCS projects can detect anomalies in 
real time, resulting in approximately 15% enhanced storage efficiency (Ale et al., 
2024). For example, clean coal technologies are AI-driven for coal plants that 
dynamically alter combustion parameters to reduce NOx and SOx emissions (Lim 
et al., 2023).

AI also aids in the integration of renewable energy. Zhao et al. (2022) found that 
AI-enabled Texas wind farms boosted output by 12% by optimizing the angle of 
turbine blades based on predictive wind speed models. However, the environmental 
cost of AI itself is undeniable. Hao (2020) reported that training large neural net-
works uses a surprising amount of energy and that a single AI model can emit more 
than 626,000 pounds of CO₂, with this trade-off costing general algorithms and 
energy-efficient hardware.
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2.4 � Adaptive Load Management and Resilience

Resilient energy systems are needed due to climate change and cyber threats. It 
redistributes loads during peak hours or outages to add more flexibility to the grid. 
Rolf et  al. (2022) showed that reinforcement learning algorithms could redirect 
power in microseconds following a cyberattack, limiting cascading failures. AI pre-
dicts hotspots for natural disaster damage; i.e., Florida’s utilities used ML to priori-
tize which areas to repair after hurricane Ian, restoring power up to 30% faster 
(Akhyar et al., 2024).

Microgrids are an example of AI supporting decentralization. For example, 
AI-controlled solar microgrids in Sub-Saharan Africa have lowered reliance on die-
sel by 60% while delivering electricity to off-grid villages (Trivedi & Khadem, 
2022). However, decentralized systems need strong cybersecurity frameworks to 
prevent breaches, and several IoT devices further threaten the protection of sensitive 
data (Fowler, 2021).

2.5 � Evaluating the Challenges and Ethical Considerations

If its potential is vast, AI adoption struggles with technical, regulatory, and social 
hurdles. New work has attained data privacy, which is always a rival for associated 
use cases, especially in consumer-facing apps and industries, like a smart meter. 
Santos et al. (2025) noted that 68% of US households distrust utilities’ data prac-
tices, preventing demand-response programs. As a solution, we recommend a co-
regulatory process that encourages transparency of energy AI systems with 
incentives or assurance  mechanisms to maximize net benefits without delaying 
deployment; current regulatory frameworks can be behind technological advances, 
as seen with the European Union’s AI Act, classifying energy AI as “high-risk” and 
imposing strict transparency requirements that can delay rollout.

Workforce displacement is another ethical challenge. As AI creates jobs in data 
science and cybersecurity, it endangers jobs in engineering. Asgarov (2024) studied 
42% of power plant operators expressed concern over replacing redundant labor in 
10 years, demonstrating the necessity of reskilling.

The literature emphasizes AI’s transformative potential in energy systems, but 
stresses persisting challenges. Key gaps include:

	(a)	 New Symposium Paper on Technical and Ethical Problems of AI-Based 
Transportation Systems.

	(b)	 Scalability: Implementing AI solutions is largely pilot-scale, with little replica-
tion in developing countries.

	(c)	 Framework for Governance of Ethical AI in Energy → Governance Challenges 
of AI Systems   → References.
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Going forward, further research should prioritize combining hybrid models (AI 
blended with human inputs), specifically focusing on transparency and public trust. 
As renewable penetration increases, AI will be critical in managing grid inertia and 
storage. Addressing all these factors will make an attainable sustainable energy 
future driven by AI.

3 � Practical Framework for AI Adoption in Power Plants

3.1 � Technical Factors

	(a)	 Data infrastructure and interoperability.

•	 Factor: Implementing AI solutions, specifically predictive maintenance and 
combustion operation optimization, requires high-quality and standard-
ized data.

•	 Challenges: Sensor inconsistency, data silos, and legacy  systems reduce the 
reliability of AI.

•	 Action:   Set common protocols for industry-wide IoT interoperability and 
de-risk to retrofit legacy systems with AI-enabled sensors.

	(b)	 Real-time decision-making

•	 Factor: Via adaptive grid management (e.g., Germany’s VPPs) and rapid 
response to disruptions.

•	 Limitations: High latency for data processing and cybersecurity risk in a 
decentralized system.

•	 Action:   Implement edge computing for low-latency analytics and use 
blockchain-based security frameworks for microgrids.

3.2 � Environmental Factors

	(a)	 Emissions reduction

•	 Factor: AI optimizes CCS efficiency (   ~ 15% gains) and lowers NOx/SOx 
through dynamic combustion control.

•	 Challenges: There are trade-offs between AI’s energy consumption and the 
benefits to decarbonization that AI can provide.

•	 Action: Focus on energy-efficient AI hardware (e.g., neuromorphic chips) 
and hybrid models that deliver as much accuracy as they do computa-
tional cost.
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	(b)	 Renewable integration

•	 Factor: AI increases renewable production (12% in wind farms), stabilizes 
grids with variable renewables.

•	 Issues: Inertia in the grid due to high penetration of renewables and limited 
storage.

•	 Response: Combine AI forecasts with grid-scale storage systems and inertia-
simulation algorithms.

3.3 � Operational and  Economic Dynamics

	(a)	 Predictive maintenance

•	 Factor: ML saves costs by reducing downtime (25% cost savings in coal 
plants) and helps to increase equipment lifespan.

•	 Risks: Big investments to AI implementation, resistance from the force.
•	 Take action: A focus on phased AI adoption underpinned by pilots with a 

focus on ROI and operator training programs.

	(b)	 Demand forecasting

•	 Factor: AI reduces forecasting errors by 30%, reducing dependency on 
Peaker plants.

•	 Barriers: Socioeconomic diversity and distrust in data practices.
•	 Act: Anonymize consumer data with federated learning and define model 

transparency.

3.4 � Ethical and Governance Factors

	(a)	 Data  privacy and public trust

•	 Data point: 68% of US households distrust their utility data practices.
•	 Response: Co-regulatory structures (e.g., EU AI Act), third-party audits, and 

public-facing explainability tools.

	(b)	 Workforce transition

•	 Challenge: 42% of operators worry about job loss.
•	 Human–machine interaction: Reskilling programs in areas such as AI super-

vision and cybersecurity, combined with policies that incentivize human-AI 
co-working.
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3.5 � Future Directions

	(a)	 Scalability and equity.

Focus: Replicate successes of pilots (e.g., Sub-Saharan microgrids) in the devel-
oping world through public–private partnerships.

	(b)	 Hybrid human-AI systems.

Emphasis: Combine domain knowledge and AI inputs to solve complex use 
cases (e.g.,   chain grid failure).

	(c)	 Regulatory innovation.

Emphasis: Dynamic policies that balance risk (e.g., “high-risk” EU classifica-
tion) with rapid declaration needs.

An energy transition empowered by AI is sustainable only when technical feasi-
bility,   environmental consequences, ethical governance, and worker inclusiveness 
are in harmony. Focusing on standardized data systems, energy-efficient AI, and 
participatory policymaking will help unleash the potential of AI and reduce its risk. 
Figure 1 shows the balancing factors for AI in energy.

Fig. 1  AI in energy transition with balancing factors (Source: Authors’ conception)
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4 � Implications

Incorporating artificial intelligence (AI) into power plants is a major step forward in 
developing power systems, with implications that span the theoretical, practical, 
social, and sustainable spectrums. Below, we unpack these implications in detail, 
grounded in the frame’s key factors, challenges, and actionable pathways.

4.1 � Theoretical Implications

	(a)	 System integration breakthroughs and improvements in AI theories.

The framework’s focus on data interoperability and real-time decision-making 
extends theoretical formulations of cyber-physical systems. It advances systems 
theory by promoting standardized IoT protocols and edge computing in support of 
decentralized grids and hybrid energy ecosystems. For example, blockchain-based 
system security frameworks (Technical Factor 1b) undermine conventional central-
ized cybersecurity paradigms and open research paths on decentralized trust infra-
structures. Likewise, AI-driven predictive maintenance (Technical Factor 1a) 
provides a scientific contribution to theories of reliability engineering by showing 
how ML can improve failure prediction in novel (dynamic) environments.

	(b)	 Environmental management and climate science.

The framework’s focus on emissions reduction and renewable integration pushes 
climate mitigation models forward. The interaction of AI in carbon capture and stor-
age (CCS) efficiency (Environmental Factor 2a) introduces new variables to climate 
simulations, such as the potential contribution of dynamic combustion control to 
NOx/SOx mitigation. Moreover, AI-augmented grid stabilization algorithms 
(Environmental Factor 2b) advance renewable energy forecasting paradigms, yield-
ing insights into scaling variable outputs.

	(c)	 Five economic and operational models.

The wisdom in Operational Factor 3a, where predictive maintenance saves 
money, slaughters traditional lifecycle costing models while signaling an artificial-
intelligence-driven future, where more data will make equipment last longer. 
However, federated learning for demand forecasting (Operational Factor 3b) paves 
new data anonymization techniques that revolutionize economic theories on con-
sumer behavior analysis.

	(d)	 Ethical governance frameworks.

Proposals for co-regulatory governance of the framework (Ethical Factor 4a) 
enrich ethical AI theory by reconciling innovation and accountability. Human-AI 
collaboration (Future Direction5b) provides a framework for an interdisciplinary 
study of hybrid decision-making systems where algorithmic insights can bridge 
operational expertise.
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4.2 � Practical Implications

	(a)	 Streamlining infrastructure and operations.

Similarly, the framework’s call for retrofitting legacy systems with AI-compatible 
sensors (Technical Factor 1a) offers a roadmap for the incremental transition of 
utilities. Phased AI adoption (Operational Factor 3a) and pilots focused on ROI are 
key to scale on a cost basis. For example, edge computing decreases latency 
(Technical Factor 1b); thus,   plants stay dynamic to compensate for grid fluctua-
tions, while neuromorphic chips (Environmental Factor 2a) minimize energy 
overhead.

	(b)	 Improving environmental performance.

Immediate emission reductions from AI-driven combustion optimization 
(Environmental Factor 2a) are already occurring, with dynamic control algorithms 
producing 10–20% NOx reductions in pilot plants. With this combination of AI 
forecasting and grid-scale storage (Environmental Factor 2b), renewables can be 
deployed to higher solar/wind penetration without compromising stability due to 
intermittency.

	(c)	 Conversion of workforce and economy.

Ethical Factor 4b, programs help with operational resistance by shifting roles to 
be more about AI supervision and cybersecurity. This is where operational factor 
3b, federated learning comes in, as it allows the models to be conducted in compli-
ance with privacy laws such as GDPR, everybody wins, and forecasting accuracy 
can be kept.

	(d)	 Alignment of policies and regulation.

The framework’s focus on dynamic policies (Future Direction 5c) calls on regu-
lators to establish agile standards, such as the EU AI Act’s risk-based classifica-
tion,   to prevent the choking off of innovation. Exploring public–private partnerships 
(Future Direction 5a) can also provide models for replicating microgrid successes in 
developing countries.

4.3 � Social Implications

	(a)	 Displacement and equity in the workforce.

Though the rapid adoption of AI jeopardizes the livelihood of 42% of operators 
(Ethical Factor 4b), reskilling programs in cybersecurity and AI supervision can 
pivot jobs from one industry to another instead of wiping them out. Yet inequity can 
result if re-qualification programs do not reach developing countries, widening 
global employment gaps.
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	(b)	 Public trust and data privacy.

Distrust in utility data practices (Ethical Factor 4a) calls for transparent AI tools, 
including explainable interfaces for consumers. Co-regulation that includes effec-
tive, third-party auditing can help restore trust, but algorithms that remain opaque 
risk entrenching skepticism, especially among marginalized populations.

	(c)	 Electricity equity and accessibility.

Democratizing energy access by scaling up AI solutions in the Sub-Saharan 
African context (Future Direction 5a) raises an important challenge for public–pri-
vate partnerships, which has usually prioritized profit over underserved populations 
in their business model. True benefits require policies ensuring AI reaches 
low-income  households.

4.4 � Sustainable Implications

	(a)	 Realigning technology’s energy footprint.

AI’s emissive cut is through carbon capture and storage (CCS) and renewables 
(Environmental Factor 2a), but its energy demand creates sustainability trade-offs. 
Focusing on energy-efficient hardware (e.g., neuromorphic chips)  and hybrid algo-
rithms (Environmental Factor 2a) alleviates this paradox.

Long-Term Grid Resilience
This can improve the integration of renewables (Environmental Factor 2b) as AI can 
simulate grid inertia and reduce dependence on fossil fuels. However, there is a risk 
of systemic failure since machines can operate seamlessly and incessantly, but 
humans are needed in the loop (e.g., cyberattacks) (Future Direction 5b).

	(b)	 The circular economy and resource utilization.

Predictive maintenance (Operational Factor 3a) also maximizes equipment life-
times, consistent with a circular economy. However, the ecological footprint of the 
production of AI hardware (e.g., rare earth elements) should be compensated by 
recycling programs and low-impact design.

	(c)	 Intergenerational equity.

Adopting AI sustainably means prioritizing policies between short-term decar-
bonization gains and long-term ethical risks. In October 2023, the world will meet 
to sign the agreements to decarbonize at the United Nations Climate Change 
Conference COP28. For example, the urgent adoption of AI within developing 
countries must carefully prevent the transfer of environmental sick wells (e.g., 
e-waste)  in the pretext of development.

This city of the framework puts a nuanced spin on the implications of the inter-
play between innovation and responsibility. In theory, it adds to systems integration 
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and ethical governance models. It gives practical pathways for modernization, but 
from a social and sustainable perspective, it insists on inclusive policies that yield 
fair benefits. The trick will be classifying what is technically feasible with what 
society holds dear so that AI can become an integral part of a fair energy transition.

5 � Conclusion

It will be a potential game changer for the energy sector with AI integration in 
power plants. However, the success of this transformative impact lies in constituting 
multidisciplinary teams that bridge the gap between innovation and sustainability in 
human society. From a technical viewpoint, the framework highlights the need for 
infrastructure modernization through data standards,   edge compute, and retrofit-
ting legacy systems. These actions are essential for unleashing AI’s potential for 
predictive maintenance and real-time grid operation. However, challengers of these 
technologies at the same time, to complement technical breakthroughs, should be 
mindful of energetically designed AI technology, including neuromorphic chips, in 
order to reduce the paradox of decarbonization by AI vs. the ever-persisting carbon 
footprint of AI itself.

The framework outlines actionable avenues for operational efficiency, from 
phased AI adoption to workforce reskilling. Predictive maintenance and 
demand  forecasting reduce capital and operational costs while extending equip-
ment lifespans, which, in turn, supports principles of the circular economy. However, 
economic advantage cannot come at the expense of the social imperatives of equity 
and trust. Transparent and adaptive AI tools and federated AI models will help allay 
fears of displacement, and workforce transition programs will be critical to address-
ing the fears  of displacement. Energy equity argues for the premise that AI’s fruits 
reach those currently marginalized and that technological advances do not exacer-
bate the fracturing of the global community.

AI’s functions arguably play a significant role environmentally optimizing emis-
sions and facilitating the integration of renewables for climate goals. However, sus-
tainability demands vigilance: grid-scale storage and inertia signature must offset 
renewables’ intermittency; AI hardware’s lifecycle assessments should be such as to 
prevent resource exploitation.

Governance, after all, is the ultimate kernel. Dynamic policies, co-regulation, 
and participatory frameworks like the EU AI Act must find a balance between inno-
vation and accountability. In this respect, public–private partnerships can open up 
democratized access to AI solutions in developing countries only when they are 
oriented by ethical principles of people and planet over profit.

In summary, energy transition in an AI-aware world is more than technical—it is 
a social compact. Focusing on interoperability, equity, and sustainability will help 
partners establish AI as a key pillar of a resilient, equitable, and low-carbon energy 
future. The future involves working together, common sense, and deep determina-
tion to ensure technology development is in harmony with society.
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The AI Compass: Navigating Ethical 
Dilemmas in Tech-Driven Sustainability

Peter Skotnicky, Antonia Puccio, and Subhankar Das

1 � Introduction

In climate change response and sustainable development, fast-developing artificial 
intelligence (AI) has received massive attention and has become a focus of concern 
(Das, 2020). AI is also coming to be increasingly praised as a transformative solu-
tion (Das, 2023), repurposing energy consumption, predicting  aspects of extreme 
weather/agricultural related changes, advancing precision agriculture, etc., as the 
world faces more significant environmental crisis from deforestation to carbon 
emissions (Borgia et al., 2024). However, lurking behind this promise lies a tangled 
web of ethical challenges that puts  everything AI hopes to achieve in jeopardy. This 
chapter discusses some moral complexities of optimizing sustainability with AI and 
the tensions between technological progress and moral obligation. The way forward 
toward solutions that will safeguard planetary health and human dignity is by exam-
ining data privacy, algorithmic bias, and the digital divide through the lens of phi-
losophy, ethics, and on-the-ground experience.
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1.1 � The Two Sides of AI as It Relates to Sustainability

Without a doubt, AI has much appeal for sustainability! Machine learning  algo-
rithms can analyze ecommerce datasets to optimize everything from real-time deliv-
ery to supply chain management (Das et  al., 2024b), allow scientists to model 
climate scenarios (Das et al., 2023), or dynamically balance energy distributions 
(Das et al., 2024b). Drones and other autonomous systems monitor endangered eco-
systems, and predictive analytics minimize waste in supply chains (Das et  al., 
2024a). These use cases show how AI can enable efficiency and scalability in sus-
tainability initiatives. Nevertheless, this power of technology is a double-edged 
sword (Das et al., 2023). The same systems that help us make optimal use of avail-
able resources may simultaneously violate individual privacy, entrench systemic 
biases, or exclude marginalized communities (Di Virgilio & Das, 2023a). As AI 
becomes a central part of environmental policymaking and strategies of capital, the 
ethical stakes of these technologies’ deployment require critical scrutiny (Di Virgilio 
& Das, 2023b). We risk adopting tools that deepen inequity, undermine trust, or 
prefer short-term payoffs over long-term equity (Majerova & Das, 2023a).

1.2 � Ethical Issues in the Domain of AI-Powered Sustainability

Ethics is the foundation of any meaningful sustainability agenda (Majerova & Das, 
2023b). Sustainability is, at its core, less about minimizing carbon footprints or 
conserving resources than it is about quiet, equity between generations, a pledge 
that the decisions we make today do not worsen the lives of people tomorrow 
(Mondal, 2020). Ethical AI governance also demands foresight and accountability, 
necessitating that technologies conform to social values (Mondal et  al., 2023a, 
2023b). Moreover, when these two imperatives converge, the stakes are consider-
able: AI-enabled sustainability efforts must balance human rights, autonomy, and 
fairness,   with environmental outputs and outcomes (Mondal et al., 2024). However, 
technology adoption often outpaces ethical discussion (Mondal & Das, 2023a). 
Policymakers and technologists, ever eager to harness AI’s efficiencies, may miss 
the ethical dimensions of data exploitation, biased algorithms, or unequal access 
(Mondal & Das, 2023b). This chapter contends that ethical vigilance should not be 
viewed as an impediment to progress, but as a necessity for progress in inclusive, 
equitable, and sustainable solutions.
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1.3 � Breaking Down the Ethical Triad of Privacy, Bias, 
and Equity

Within the AI-sustainability nexus are three perilously entwined ethical chal-
lenges—data privacy, algorithmic bias, and the digital divide (Mondal & Das, 
2023c). Every issue exposes crucial fault lines where technological ambition col-
lides with ethical imperatives (Mondal et al., 2022).

1.4 � Data Privacy: The Cost of Information

AI is hungry for data, often personal, fine-grained, and sensitive (Mondal et  al., 
2023a, 2023b). Smart meters monitor household energy consumption, and the satel-
lite imagery observes land dynamics while IoT records behavior patterns (Mondal 
et al., 2023a, 2023b). Although this information fuels innovation, it also raises pri-
vacy concerns (Mondal & Sahoo, 2019). Who owns this data? How is it protected? 
Furthermore, what happens when surveillance is deemed acceptable for sustainabil-
ity goals? Urban AI projects to reduce emissions, for example, might track citizens’ 
movements,   thus normalizing intrusive data practices (Nadanyiova & Das, 2020). 
Philosophers from Michel Foucault to P. W. Singer have warned of the panopticon 
effect, through which surveillance devices alter the nature of social power (Tandon 
& Das, 2023). Sustainable goals may be derailed if their implementation overrides 
the will of the people or if their adoption is the only way to gain access to essential 
services, such as healthcare or energy, leading to what Vrana and Das (2023a) call 
“privileged” sustainability, in which only the environmentally conscious  are 
rewarded with clean air and renewable energy (Yegen & Das, 2023); such systems 
cannot last if the people lose faith in their government Vrana and Das (2023b).

1.5 � Algorithmic Cognitive Biases: Where Objectivity 
Goes Awry

The idea that AI is inherently neutral is a fallacy. Judicial algorithms trained on 
historical data encode social biases that produce imbalanced results. In sustainabil-
ity, biased models could misallocate resources: directing flood mitigation infra-
structures to wealthy neighborhoods while ignoring the poor or vulnerable 
population. Such biases undermine environmental goals overall, as marginalized 
communities—who are often at the forefront of climate change impacts—are also 
underserved, extending the cycle of injustice. Grounded in feminist ethics and criti-
cal race theory, this chapter describes the convergence of algorithmic fairness with 
environmental justice. It makes the case that those engaged in algorithmic fairness 
must seek participatory design processes that center marginalized voices.
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1.6 � Replicating Inequality: The Digital Divide

Not everyone has  equal access to AI’s advantages. AI’s development is largely 
in  the hands of rich nations and wealthy corporations, while low-income countries 
lack the infrastructure to deploy or adapt tools. Thus, a bifurcated sustainability 
landscape threatens to take shape as AI-enabling solutions to environmental chal-
lenges become exclusive to  the luckiest few. The unfortunate ones  are on the 
mercy of traditional and ineffective methods. The capabilities approach of philoso-
pher Amartya Sen reminds that without ensuring that all communities can flour-
ish,  we’ll never achieve authentic sustainability. Filling that gap with global 
collaboration, open-source solutions, and equitable  access policies is essential.

1.7 � Ethics in a Tech-Driven World: 
The Philosophical Foundations

In this chapter, we intersperse ethical philosophy with its analysis to help guide you 
through these dilemmas. Utilitarian frameworks, which prioritized the greatest good 
for the most significant number of individuals, clashed with deontological ethics 
that emphasized moral duties and personal rights. A utilitarian might justify data 
collection because it advances the greater good of climate action, but   a deontolo-
gist would instead reassert the sanctity of privacy. Similarly, Rawlsian frameworks 
of justice invite us to imagine AI systems that serve our least well off, and to avert 
from sustainability levers that could fortify disadvantage. These philosophical tradi-
tions address more profound human questions than technical fixes can resolve 
(including issues of power, justice, and human flourishing in the Anthropocene).

1.8 � Methodology: From Theory to Practice

This chapter integrates views from multiple disciplines. The interviews also touch 
on pragmatic perspectives on balancing innovation with accountability (from AI 
ethicists) and some solutions from sustainability experts. A few case studies in this 
section exemplify successes and cautionary tales, including biased energy algo-
rithms in California and inclusive AI projects in Kenya. Both ethical studies and 
philosophical literature provide theoretical rigor, while policy analyses identify rel-
evant regulatory frameworks—most notably the EU’s General Data Protection 
Regulation (GDPR)—and their implications for sustainable AI. Drawing on knowl-
edge throughout disciplines enables one to perceive the ethical dilemmas at play 
better, and thus, attention is turned away from reductive techno-utopian or techno-
dystopian narratives.
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1.9 � Ethical Horizons: No Silver  Bullet, But Many Solutions

Diagnosing problems is important,   but this chapter also lays out paths to the future. 
It calls for embedding the principles of ethical AI design—transparency, account-
ability, and inclusivity—from the start. You can also reduce bias, create ownership 
through participatory governance models, and let communities co-design AI tools. 
Policymakers should enact regulations that protect privacy without stifling innova-
tion, and cross-country coalitions can help bridge the digital divide, through both 
dollars and knowledge-sharing. Ultimately, this chapter is also about ethical AI—
that is, solutions for sustainability that are not just top-down, repressive narratives 
but navigation tools that lead us toward equitable and equitable solutions that are 
cutting-edge. Ethics also needs to evolve as AI shifts the way we solve for sustain-
ability. This chapter pushes the readers of this book to think critically about one of 
its key questions: What future are we creating, and for whom? By engaging directly 
with data privacy, algorithmic bias, and the digital divide, we can steer AI toward its 
most significant promise—not just as a tool for environmental resilience but one of 
equity and human dignity. We hold the compass; this is the legacy that technology 
enablement will leave behind; how shall we move ahead?

2 � Literature Review Sustainable Development

What is evident from the growing body of scholarship concerning the intersection 
of AI  (artificial intelligence) and sustainability is that such intersection is the stuff 
of ethical complexity. Scholars in fields as diverse as computer science and philoso-
phy have examined how AI’s pious aspiration of environmental efficiency rubs 
against threats to privacy, equity, and justice. This chapter aggregates literature 
about three overlapping ethical issues—data privacy, algorithmic bias, and the digi-
tal divide—and positions these issues within philosophical underpinnings that 
inform ethical AI governance.

2.1 � Data Privacy: From Surveillance to Sustainable

The need for significant AI data to optimize sustainability outcomes raises signifi-
cant privacy concerns. Smart grids, precision agriculture, and urban planning sys-
tems often data-mine finely grained data on people’s energy consumption, mobility, 
and behaviors (Akhter & Sofi,  2021). Such data can help to curb waste and carbon 
footprints, but some scholars caution that a surveillance economy could normalize 
invasive practices without rigid constraints on how it is deployed. Shah et al. (2025) 
place this tension in the context of surveillance capitalism, suggesting that extract-
ing data for perfectly altruistic purposes (like sustainability) can still lead to 
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commodifying user autonomy. Smart city initiatives like those in Songdo and 
Barcelona have been criticized for favoring efficiency at the cost of residents’ pri-
vacy rights (Huh et al., 2024).

Philosophical perspectives further complicate these concerns. Floridi (2016) 
identifies “informational privacy” as a fundamental human right and argues that 
data collection for sustainability goals must be grounded in transparency and con-
sent. Mathiesen’s (1997) notion of the panopticon—a society organized through 
ubiquitous gaze—echoes in critiques of AI-enabled environmental surveillance. 
Sustainability-focused (even corporate) AI initiatives for tracking carbon emissions 
or deforestation can thus also enable governments or corporations to monitor real-
time movements by Indigenous populations defending traditional territories (Xiao 
& Xiao, 2025; Olawade et al., 2024).

The European Union’s General Data Protection Regulation (GDPR) is an exam-
ple of a regulatory framework designed to address these risks by requiring anony-
mizing data and ensuring user ownership over personal data. Critics, however, claim 
that such policies are reactive and do not challenge the existing power structures 
behind data ownership (Mueller, 2019). As such, the literature thus calls for 
“privacy-by-design” AI systems that integrate ethical safeguards into the underlying 
sustainability technologies from the very inception.

2.2 � Algorithmic Bias and Environmental Justice

Algorithmic bias in AI is a significant threat to fair sustainability effects. Research 
found that machine learning models trained on historical data often replicate soci-
etal inequalities and disadvantage marginalized groups (Min, 2023). In the environ-
mental context, biased algorithms may misallocate resources by directing flood 
protection infrastructure to more affluent neighborhoods or failing to identify pollu-
tion hot spots in low-income neighborhoods (Ebrahimi et al., 2024). For instance, a 
2021 audit of California’s wildfire prediction AI found that it underrepresented rural 
communities, delaying evacuations for non-English-speaking populations (Linardos 
et al., 2022).

Scholars of environmental justice trace these technical failures to systemic ineq-
uities. Schlosberg (2013) argues that the communities behind these overlapping 
issues are among the least represented in the data for training AI, exacerbating a 
“double injustice,” given that they are often most negatively impacted by climate 
change. Feminist and critical race theorists further analyze, exposing the myth of 
technological “objectivity” as a smokescreen for the more prevalent Western, male-
centric approaches to tech development (Wing & Pappalardo, 2022). Van 
Wynsberghe (2021) argues that creating sustainable AI systems requires participa-
tory design practices, where those most affected by sustainability issues come 
together as co-designers. Examples from Kenya’s solar energy sector show that 
engaging local stakeholders in the development process of algorithms mitigates bias 
and leads to better resource allocation (Park, 2021).
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The literature also discusses technical solutions, such as fairness-aware machine 
learning and bias audits (Ferrara et  al., 2023). Nevertheless, even with technical 
fixes, structural inequities remain to be addressed. What is needed, as Reddy et al. 
(2019) describe, is an integration of “algorithmic accountability” with policy 
changes that center equity in the distribution of sustainability funds and governance.

2.3 � The Digital Divide: The Accessibility Crisis of AI

From an AI-driven sustainability perspective, there are many ethical dilemmas due 
to the global digital divide. Corporations and high-income countries dominate AI 
research, while low-income countries cannot invest the skills, infrastructure, or 
funding needed to implement such technologies (Khan et  al., 2024). This diver-
gence poses a risk of creating a “sustainability gap,” where a small elite harnesses 
the rewards of AI, and the rest rely on antiquated systems (Linnerud et al., 2021). 
For instance, climate models trained with AI often do not include data from African 
countries, weakening their predictive power concerning droughts (Jain et al., 2023).

For this issue, we used Dr. Amartya Sen’s “capabilities approach,” a philosophi-
cal framework emphasizing that true sustainability allows all communities better 
access to the tools they need to flourish (Dang, 2014). This principle, however, is 
frequently ignored by present-day AI development. The authors expressed that 
energy-intensive training procedures of large language models—often trained with 
fossil fuels—contradict sustainability targets and pose obstacles for researchers in 
the Global South (Luitse & Denkena, 2021).

This divide is being bridged through initiatives like open-source AI platforms 
and partnerships like the UN’s AI  for good initiative (Wang et al., 2024). However, 
such programs have been criticized for focusing more on Western priorities than 
local needs (Ruja et al., 2024). For example, some AI projects in agriculture in India 
have failed when developers did not account for farmers’ traditional knowledge. 
Therefore, literature calls for “decolonial AI” structures that prioritize Indigenous 
knowledge and reciprocal sharing of resources (Mohamed et al., 2020).

2.4 � Synthesis and Literature Gaps

Although existing studies adequately examine how ethical challenges impact indi-
vidual aspects, there is limited research on how ethical challenges are intercon-
nected. Share this: In fact, the digital divide may be aggravated by algorithmic bias 
that casts marginalized people out of the machine learning wealth. At the same time, 
privacy violations eat away at deference toward sustainability projects. Most case 
studies are Western,   ignoring Global South considerations. Future studies should 
examine participatory approaches that incorporate local knowledge into the design 
of AI systems, and evaluate the effects of AI ethics policies over the long term.
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The literature highlights how AI’s box is neither green nor open by default—it 
requires intentional governance grounded in justice, transparency, and inclusion. 
Drawing on technical analysis and philosophical rigor, scholars can help guide AI 
toward its promise as a tool for equitable planetary stewardship.

3 � Practical Framework: Ethics and Sustainability in AI

Implementing responsible AI in sustainability requires organizations to take a for-
malizable multi-stakeholder approach, prioritizing data privacy, algorithmic bias, 
and the digital divide. The following is a five-step framework grounded in the ethi-
cal principles and challenges we have worked through, intended for use by policy-
makers, technologists, and community leaders in implementation.

3.1 � Ethical Design and Governance Structures

	(a)	 Establish an AI Ethics Board.
	(b)	 Composition: Add AI ethicists, sustainability experts, legal advisors, social 

advisors, and local community champions (e.g., Indigenous leaders and disad-
vantaged groups).

	(c)	 Overseeing AI projects from the concept stage to the implementation stage, 
with engagement to ethical principles (transparency, justice, privacy).

	(d)	 Tools: Checklists → e.g., use the AI Ethics Impact Assessment to identify 
potential risks to bias, privacy, and accessibility.

	(e)	 Long term: Embrace  Privacy-by-Design Protocols.
	(f)	 Data minimization: Only collect the minimum information necessary to meet 

sustainability objectives (e.g., total energy consumption vs. individual 
households).

	(g)	 Anonymization and encryption: Implement tools such as differential privacy 
for restricting user visibility in datasets.

	(h)	 Consent mechanisms: There must be explicit, multilingual opt-in systems 
deployed to collect data (e.g., IoT devices in smart cities).

3.2 � Development of Algorithms with Bias Mitigation

	(a)	 Conduct Bias Audits Before Deployment.
	(b)	 Step 1: Audit datasets for representation gaps (e.g., rural communities under-

captured by climate models). Tools like IBM’s AI Fairness 360 can already 
automate bias detection.
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	(c)	 Step 2: Work with NGOs or community groups to confirm datasets (e.g., work 
with farmers to annotate images of crops).

	(d)	 Engage in Participatory Design.
	(e)	 Outcome: Kenya’s Solar AI Initiative reduced bias by introducing farmer feed-

back into solar grid algorithms.

3.3 � Bridging the Digital Divide

	(a)	 Develop and  evolve fair infrastructure.
	(b)	 AI hubs of the Global South: Work with institutions in the Global South to cre-

ate open-source, low-resource AI tools (e.g., solar-powered edge computing 
solutions for the off-grid).

	(c)	 Institutional strengthening: Cross-funding to train local technicians and policy-
makers. For instance, India’s AI for Rural Development trained 10,000 farmers 
in AI-powered farming.

	(d)	 Prioritize inclusive access.
	(e)	 Implementation/resources. Subsidized technology: Provide a tiered pricing 

scheme for AI sustainability tools (e.g., subsidized licenses for INGOs in low-
income regions).

	(f)	 Data sovereignty: Enable Indigenous data governance models that empower 
communities to manage data relevant to their environmental domains.

3.4 � Open  Monitoring and Accountability

	(a)	 Launch public dashboards.
	(b)	 Metrics: Show real-time statistics about AI system performance and compli-

ance in terms of privacy  (e.g., percentage of anonymized data), bias (e.g., allo-
cation of resources), and accessibility (e.g., user demographics).

	(c)	 The EU’s Climate Neutrality Tracker uses AI to publish carbon reduction out-
comes with equity breakdowns.

	(d)	 Third-party yearly audits: Employ independent auditors to review AI systems 
on ethical metrics (e.g., the Algorithmic Justice League’s bias benchmarks).

	(e)	 UNDO: Agree on penalties for violations (e.g., GDPR style pay-per-use).
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3.5 � United Nations and International Organizations

	(a)	 Form cross-sector collaborations: Connect governments with tech companies 
and NGOs to share resources. For example, the UN’s AI for Earth Alliance 
sponsors projects that match Silicon Valley engineers with African climate 
scientists.

	(b)	 Policy frameworks: Push for international treaties on ethical AI in sustainability 
(e.g., UN resolutions on algorithmic accountability).

	(c)	 Fund decolonial AI research grants: Fund initiatives focusing on Indigenous 
knowledge (e.g., models incorporating traditional ecological knowledge 
with AI).

	(d)	 Open-source repositories: Develop global repositories (e.g., Sustainability 
AI  Commons) for sharing code, data, and best practices.

3.6 � Implementation Roadmap

	(a)	 Pilot phase (months 1–6): Experiment with bias audits and participatory 
design  in one region (e.g., a solar energy initiative in Kenya).

	(b)	 Scale  phase (months 7–12): Build infrastructure and training programs accord-
ing to pilot takeaways.

	(c)	 Integrate globally (year 2+): Incorporate the framework into global sustainabil-
ity frameworks  (e.g., UN SDGs).

This framework strikes the right balance between innovation and accountability 
to harness AI as a force for equitable planetary stewardship. Institutionalizing ethics 
at all stages will help stakeholders approach the AI-sustainability nexus with rigor 
and accountability. Figure  1 depicts the framework for responsible AI in 
sustainability.

4 � Implications

The role of AI in sustainability presents profoundly significant implications at the 
theoretical, practical, social, and sustainable levels. The proposed ethical frame-
work—where privacy, bias mitigation, equity, and global collaboration take prece-
dence—recontextualizes the practices of conceptualizing, deploying, and governing 
technology societally in the Anthropocene. We unpack these implications in 
detail below.
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Fig. 1  Responsible AI in sustainability framework (Source: Authors’ conception)

4.1 � Theoretical Implications

Ethics and AI Use
Utilitarian approaches that privilege the environment through efficiency are tem-
pered by deontological commitments to individual rights (e.g., privacy) and justice 
principles. For example, the importance the framework renders of participatory 
design also corresponds with key values of feminist ethics of care that emphasize 
relational accountability and intersectionality. Focusing on the voices of the margin-
alized in AI development, the model turns away from top-down, technocratic solu-
tions and opens up space for pluralistic ethical systems.

Indigenous philosophies, which emphasize interdependence between humans 
and ecosystems, undermine Western anthropocentrism (Grange & Mika, 2018). The 
framework’s demand for decolonial AI—incorporating traditional ecological 
knowledge—counteracts dominant progress narratives and extends the theoretical 
reach of sustainability ethics.

Building Theory on AI Governance
The framework further injects abstract principles, such as “transparency” and “fair-
ness,” into an ongoing debate around AI governance. It resonates with Floridi’s 
(2016) information ethics—a view that data ecosystems need to respect human dig-
nity—but goes further by providing practical approaches (e.g., privacy-by-design, 
bias audits). It also challenges models of technological development informed by 
neoliberalism through its promotion of redistributive policies (e.g., subsidized AI 
tools)  and global equity, with parallels to Sen’s capabilities approach.
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4.2 � Practical Implications

Embed Ethical Accountability as Institutional Practice
The framework requires structural shifts for organizations. Creating AI Ethics 
Boards holds some of the key players accountable but must be resourced and include 
cross-disciplinary collaboration. The cost of implementation could prove challeng-
ing for smaller entities, especially in the Global South, creating a compliance 
periphery. However, tools such as open-source AI hubs and third-party audits could 
democratize access.

Technical and Logistical Obstacles
Technical expertise and infrastructure are required to implement bias mitigation 
protocols (e.g., pre-deployment audits). While tools such as IBM’s AI Fairness 360 
automate the process of bias detection, their effectiveness is conditional on repre-
sentative training data—which is often a challenge in data-scarce geographies. 
Sunbelt, data-in-arms race, programs are incompatible with tighter privacy-by-
design protocols, which enforce designs that prevent sharing and disseminating 
data, like some that are increasingly being built into data-intensive sustainability 
targets, like real-time climate change modeling. The organizations need to address 
these  trade-offs through rigorous testing and stakeholder feedback iteratively.

Scalability and Adaptation
The framework’s phased implementation (pilot, scale, global integration) recog-
nizes the diversity of contexts. The participatory design aspect of Kenya’s solar 
projects may be a miss for European urban AI. Policymakers should tailor guide-
lines to local ecological, cultural, and economic contexts while still upholding core 
ethical standards.

4.3 � Social Implications

Equity and Inclusion
The framework fosters social equity by working to confront algorithmic bias and 
the digital divide. Communities whose voices are left out in tech development, like 
marginalized communities,   gain agency in co-creation workshops and data sover-
eignty models. Indigenous-led AI projects, for example, could ensure environmen-
tal  monitoring respects ancestral land rights. However, power imbalances remain: 
some corporations and  some governments will embrace the language of “inclu-
sion” without overhauling decision-making.

Trust and Public Engagement
In AI-led sustainability (e.g., smart cities), surveillance worries  undermine public 
trust. The  framework’s transparency mechanisms—public dashboards that, for 
example, track privacy compliance—restore trust by demystifying AI systems. But 
literacy gaps constrain engagement; marginalized groups may not be able to 
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interpret  dashboards, or choose not to have their data collected. Multilingual edu-
cation campaigns and community liaisons   are critical to inclusive participation.

Cultural Change in Pornography Technology Development
The framework contests the tech industry’s better-known “move fast and break 
things” ethos by placing deliberation ahead of speed. That cultural shift might slow 
innovation but will lead to fairer outcomes. Reforms also necessarily entail enforce-
able regulations, the curtailment of exploitative labor practices, and changes to 
investor incentives.

4.4 � Sustainable Implications

Stewardship of the Environment vs. Tech Footprints
The environmental costs of AI, like energy-intensive data centers, are also at odds 
with sustainability goals. The framework’s focus on low-resource AI tools  (e.g., 
solar-powered edge computing) alleviates this tension. However, scalability remains 
challenging: 626,000 pounds of CO₂ can be emitted in training one AI model. 
Furthermore, a sustainable framework must connect AI innovation with renewable 
energy transitions and rigorous carbon accountability.

Long-Term Resilience
Countering short-termism in policymaking, the framework axiomatically estab-
lishes intergenerational justice. AI-driven reforestation algorithms, for instance, that 
prioritize biodiverse ecosystems over monocultures provide long-term climate divi-
dends. But political cycles and corporate quarterly reports often reward the opposite 
of such foresight. We have to anchor these long-term promises in some legal 
mechanics, a climate trust, or something similar, to ensure that ethical AI can stick.

Preventing Greenwashing
AI Transparency Solutions can counteract corporate green washing by delivering 
real-time, verifiable environmental impact data. Using machine learning algorithms 
the AI system can examine corporate sustainability claims in relation to actual emis-
sions, how companies run their supply chains, and what their attitudes are to con-
sumption of resources. This provides an accountability structure that prevents 
companies from eco-washing unviable practices. Blockchain-verified carbon track-
ing and AI-audited environment reports means planets-warming greenwashing 
would be far more difficult and expensive than real sustainability.

Decolonial Sustainability
The framework’s decolonial AI perspective puts Indigenous knowledge at the cen-
ter, correlating ecological health with cultural health and decoupling cultural health 
from economic growth for the economic benefit of the colonizing power. One could 
point toward how the perception of AI in people could link with integrating the 
traditional fire management with AI—feeding data from traditional fire manage-
ment into the AI model to make the model more sensitive toward data that is based 
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on not only being in accordance with the biodiversity but also on the Indigenous 
sovereignty. This model challenges extractive sustainability paradigms, proposing 
reciprocity,   not exploitation, as the basis for solutions.

These implications of the ethical AI framework catalyze shifts with diverse trans-
formative potential; all emerge within different contexts of tension. In doing so, it 
links radically different ethical paradigms in a theoretically unified manner, 
grounded in a holistic notion of technology-driven sustainability. From a more prag-
matic angle, it demands institutional innovation and flexibility—particularly in 
spaces with few resources. It trickles through equity socially, but has to trample on 
existing power. From an environmental perspective it weighs up the potential of AI 
against planetary boundaries even if challenges of scale and greenwashing persist.

This framework is not intended to be a silver bullet but rather an evolving bea-
con. Its success relies on continued dialogue among philosophers, engineers, poli-
cymakers, and communities. By treating ethics as a participatory process rather than 
a checklist of the perfunctory, societies can leverage AI not just as a tool for sustain-
ability but also as an engine for pro-equity and resiliency movements.

5 � Conclusion

But the convergence of AI and sustainability represents a watershed moment in 
humanity’s battle  against the climate crisis—a moment brimming with potential 
and layered with ethical complexity. As discussed in this chapter, there’s no ques-
tion AI has  powers of energy system optimization, ecological forecasting, and 
minimizing environmental impact. But used without ethical safeguard, it can mag-
nify inequality, infringe on  privacy, and open chasms around the world. This pro-
posed ethical paradigm of transparency, equity, and justice provides a means to 
navigate these challenges while permitting  technological advancement to blossom 
in ways that uplift rather than detract from human dignity and planetary health.

Sustainability and AI ethics may initially look like problems to tackle sepa-
rately—but theoretical illumination suggests that they  are really entangled impera-
tives. To bridge utilitarian efficiency with deontological rights, feminist care ethics 
with Indigenous ecological wisdom, we need to retheorize progress. The long and 
short of it: Institutionalizing accountability for AI technology, from how it is devel-
oped—AI Ethics Board and bias audits—to equitable infrastructure and decolonial 
collaboration. The framework gives voice to previously marginalized groups, hav-
ing communities go from being passive recipients of the design of AI to being active 
participants in co-creating these tools on a social level. However, this change relies 
on dismantling power asymmetries and fostering trust through transparency.

From a sustainability perspective, the framework pokes holes in the idea that AI 
is a “silver bullet.” While artificial intelligence can reinforce adaptation to climate 
impacts, it also has environmental costs—from energy consumption to the extrac-
tion of minerals and metals—that need management strategies, including low-
resource technologies and renewables integration. Notably, the framework guards 
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against greenwashing partly because it rewards deliverable, equitable results rather 
than appearances of sustainability.

However, the answer is not simply the default path. The rapid progression of AI 
technology requires adaptable governance, conversations, and international collab-
oration. Policymakers, technologists, and civil society must join hands to build ethi-
cal standards, resources, and accountability mechanisms so potent actors do not 
abuse their power. To create sustainable AI without infusing ethical principles into 
their work means that we are simply building the same systems that made the 
exploitation and climate crisis possible in the first place—the stakes could not 
be higher.

So, in the end, there is no measure of AI’s success except whether it can bestow 
upon society a post-capitalistic world in which ecological health and social justice 
cannot be disentangled. If we treat ethics as a beginning rather than an endpoint, we 
can help guide AI to its promise as an engine for shared thriving. The compass 
points the way; laminated roadmaps to fair,   sustainable futures will be part of 
today’s menu of choices.
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1 � Introduction

Living through the twenty-first century has propelled humanity into an age of unri-
valled technological development and ecological crisis (Das, 2020). The global 
economy keeps growing, but so do carbon emissions, loss of biodiversity, and 
depletion of resources, and these developments expose the fragility of Earth’s eco-
systems (Borgia et  al., 2024). This paradox underpins humanity’s biggest chal-
lenges: the tug between wealth creation and ecological conservation (Das, 2023). 
For decades, we presented the relationship between growth and sustainability as a 
zero-sum game: countries and companies believed that advancement in one arena 
would require sacrifice in the other (Das et al., 2024b). However, humanity now 
stands on the precipice of digital transformation, characterised by the exponential 
growth of artificial intelligence (AI), which presents an unprecedented opportunity 
to redefine the existing narrative (Das et al., 2024a). By harnessing AI’s potential to 
process large datasets, optimise complex systems, and predict future states, society 
may finally harmonise what appear to be irreconcilably conflicting aims: economic 
progress and environmental sustainability (Das et al., 2023).

This chapter investigates AI’s potential as a broker in this vital discussion. It 
interrogates the historical roots of the divide between growth and sustainability, 
explores the theoretical frameworks underlying economic and ecological 
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imperatives, and examines real-world applications, where AI already enables inno-
vative solutions (Di Virgilio & Das, 2023a). From optimising energy grids to 
enabling circular supply chains, AI’s potential to decouple economic activity from 
environmental harm—a goal core to ecological economics—must be understood as 
profound and multi-faceted (Di Virgilio & Das, 2023b). However, this potential is 
fraught with ethical and practical complexities. In doing so, the chapter critically 
evaluates the potential risks of implementing artificial intelligence, from algorith-
mic bias to computational intensiveness. It considers future directions to promote 
the alignment of these technologies with the objectives of equity, transparency, and 
planetary health.

1.1 � The Growth-Sustainability Dilemma: 
A Historical Background

The Industrial Revolution was humanity’s first great leap towards modern economic 
growth, but it also set a resource extraction paradigm in place. Combining fossil 
fuels,   deforestation, and unregulated industrialisation produced prosperity for 
some at a steep price in ecosystems (Majerova & Das, 2023a). By the middle of the 
twentieth century,   the “Great Acceleration” sent global GDP skyrocketing along 
with carbon emissions, plastic waste, and species extinction rates. Conventional 
economic models, influenced by neoclassical theories, emphasising infinite growth 
on a limited planet, dismissed ecological externalities, for the most part. A different 
orthodoxy prevailed until the 1972 Limits to Growth report and subsequent sustain-
ability movements that were critical of this orthodoxy, advocating instead for sys-
tems transitions to honour planetary boundaries, the safe operating space for human 
engagement with the planet’s biophysical properties (Majerova & Das, 2023b).

However, progress has been uneven. Although the United Nations Sustainable 
Development Goals (SDGs) and agreements such as the Paris Accord signify world-
wide agreement on the importance of balance, all implementation is embattled 
(Mondal, 2020). Many countries, especially in the Global South, are under political 
pressure to prioritise poverty alleviation and industrialisation, even to the detriment 
of environmental protection (Mondal et al., 2023a, 2023b). Moreover, corporations 
struggle to balance short-term profit pressure from their shareholders with long-
term sustainability commitments (Mondal et al., 2024). Into this disputed landscape 
comes AI, a tool that has the potential to redefine the old trade-offs through effi-
ciency, innovation, and foresight.
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1.2 � The Role of AI as a Factor in Decoupling

Decoupling and splitting economic growth from environmental harm is one of the 
foundations of sustainable development (Mondal & Das, 2023a). Ecological econo-
mists argue that GDP growth depends on dematerialisation and decarbonisation 
(absolute decoupling), which we must achieve to avoid ecological melt-downs 
(Mondal & Das, 2023b). AI’s Promise to “Do More with Less” Here, the AI’s 
potential to boost resource productivity is promising. Some applications include 
optimising energy in manufacturing, reducing waste through precision farming, and 
improving logistics to minimise carbon footprints using machine learning algo-
rithms (Mondal & Das, 2023c). For example, Google’s data centres use AI-powered 
cooling systems that save 40% of energy use, which shows how “smart” efficiency 
gains can produce dividends in both the economic and the environmental sense 
(Mondal et al., 2022).

AI also makes predictive capabilities more sophisticated, allowing societies to 
pre-empt ecological complexifying crises (Mondal et al., 2023a, 2023b). AI-based 
climate modelling also enhances the accuracy of extreme weather predictions, while 
satellite image analysis allows for real-time deforestation monitoring (Mondal & 
Sahoo, 2019). These tools enable policymakers and businesses to make data-driven 
decisions that prevent disaster rather than respond to it (Nadanyiova & Das, 2020). 
Moreover, AI drives a shift towards a circular economy, which seeks to reduce waste 
through reuse and recycling (Tandon & Das, 2023). Some startups, such as AMP 
Robotics, use AI vision systems to identify recyclables with superhuman accuracy 
and convert waste into revenue streams.

This chapter explores such applications from varied geographies and sectors. 
Denmark’s energy sector exemplifies systemic AI integration: its wind farms are 
already using predictive analytics to sync energy production with demand, and 
smart grids are balancing renewable source inputs to achieve 80% renewable elec-
tricity (Vrana & Das, 2023a). In agriculture,   AI-powered crop yield predictions in 
India help smallholder farmers adjust to climate volatility, increasing incomes while 
lowering pesticide and water use (Vrana & Das, 2023b). Corporate case studies, like 
Patagonia’s AI-powered supply chain, demonstrate how digital is scaling circularity 
mindsets—repair, resale, recycling—with data analytics (Yegen & Das, 2023).

These are just a few examples of AI’s versatility and contextual challenges. In 
emerging economies, the lack of digital infrastructure and unequal access to tech-
nology risk deepening the “AI divide”. In contrast, countries with strong gover-
nance systems, such as Estonia’s digital-first approach, illustrate how institutional 
foundations enhance AI’s potential.
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1.3 � It Is Ethical and Governance Imperatives

AI’s impact on sustainability is not by definition wholesome. Training big AI mod-
els takes enormous energy and could negate their environmental gains. Algorithmic 
bias may marginalise vulnerable communities in climate adaptation strategies, 
while automation could upend labour markets. Ethical AI development requires 
transparency,   inclusive growth, and accountability. “Energy-efficient algorithms” 
and equitable access are among the AI principles the chapter advocates, framed as 
rules, similar to the EU’s forthcoming AI Act.

Interdisciplinary collaboration is essential for the way forward. We must co-
develop solutions between economists, ecologists,   and technologists that align AI 
with planetary boundaries. Governments need tools assessing AI’s lifecycle impact, 
and businesses must embed sustainability into their AI governance. Initiatives such 
as AI for Earth are great examples of public–private partnerships that showcase the 
strength of collective action.

At the end of this chapter, we discuss how AI is not a panacea but a key tool in 
humanity’s sustainable development toolkit. Responsible integration of AI requires 
humility, foresight, and an unswerving commitment to equity. By harmonising tech-
nological invention with ecological insight, society can walk the tightrope of our 
era—achieving prosperity for both people and the planet. These pages unpack these 
themes by providing theoretical insights, empirical evidence, and a roadmap for 
wielding AI as a catalyst for sustainable transformation. The stakes could hardly be 
higher: our choices now will decide whether the digital age marks an epitaph in the 
Anthropocene or the bedrock of a vibrant, regenerative future.

2 � Literature Review

This casts the relationship between economic growth and environmental sustain-
ability as a topic of interdisciplinary inquiry in economics, ecology, and technology 
studies in a new light. This literature review accordingly disentangles the theoretical 
frameworks, empirical findings, and ethical controversies of this relationship 
through the lens of artificial intelligence (AI). Based on peer-reviewed studies, pol-
icy reports, and analyses of cases, it examines three interrelated themes: (1) histori-
cal tension between growth and sustainability paradigms; (2) the role of AI as a 
decoupling agent; and (3) ethical and governance challenges associated with AI 
deployment.
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2.1 � Theoretical Foundations 
of the Growth-Sustainability Dilemma

The tension between economic development and ecological sustainability is a mis-
conception propagated by neoclassic economic models that conflate GDP growth 
with societal progress (Anwarya, 2022). However, such models overlook planetary 
boundaries—the biophysical limits in Earth’s systems—as argued by ecological 
economists (Sobkowiak et al., 2023). The  Limits to Growth report was the first to 
suggest that infinite growth on a finite planet would cause systemic collapse; a per-
spective corroborated by the notion of the Anthropocene, a geological record domi-
nated by human activity.

Degrowth: A conscious downscaling of resource consumption, as a path towards 
sustainability (Khmara & Kronenberg, 2020), is offered as the alternative to the 
traditional growth model. On the other hand, advocates of “green growth” believe 
that technological innovation can disassociate economic activity from ecological 
risk. This debate forms the basis of the United Nations Sustainable Development 
Goals (SDGs)—aspiring to create balanced prosperity (SDG 8) alongside climate 
action (SDG 13) and responsible consumption (SDG 12). The rise of AI as a trans-
formative technology has revitalised debates about decoupling, with researchers 
underlining its ability to improve resource utilisation and forecast environmental 
risks (Padmaja & Lakshminarayana, 2024).

2.2 � AI as a Decoupling Agent: Mechanisms and Evidence

Decoupling will require improvements in energy efficiency, waste reduction, and 
circular economy practices—fields in which AI shows great promise. Machine 
learning algorithms are at finding patterns of existing and future behaviours within 
vast amounts of datasets, which is forcing precision agriculture (Vadén et al., 2020), 
smart energy grids (Basu et al., 2021), and predictive maintenance in manufacturing 
(Moreau et al., 2019). For example, AI-enabled demand forecasting in supply chains 
can minimise overproduction, a leading cause of carbon emissions (Toorajipour 
et al., 2020).

AI and Its Role in Renewable Energy Integration: Empirical Evidence. Using 
predictive analytics, AI-enabled wind farms in Denmark can boost energy output by 
20% (Bennagi et  al., 2024). DeepMind used reinforcement learning to reduce 
Google’s data centre cooling costs by 40%. In the same way,   AI-powered precision 
agriculture in India improved crop yields by 30% and reduced water consumption 
by 25% (Hoque & Padhiary, 2024). Tong and Nikoloski (2020) reported that 
AI-assisted phenotypic selection in China increased wheat yields by 35%. These 
examples align with strong sustainability, emphasising the retention of natural capi-
tal through the evolution of economic systems.
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However, that decoupling remains contested. As Hickel and Kallis (2019) warn, 
relative decoupling (reductions in resource use per unit of GDP) is too often an 
(illusory) cover for absolute increases in environmental damage. The massive 
energy burden of AI’s infrastructure like data centres using 1% of the world’s elec-
tricity comes at risk of offsetting its benefits for sustainability (MIT Energy 
Initiative, 2025). For these reasons, scholars advocate for developing “Green AI” 
frameworks that prioritise energy-efficient algorithms.

2.3 � Ethics and Governance Issues

Ethical questions around equity,   transparency, and unintended consequences arise 
with AI’s environmental applications. Algorithmic bias, for instance,   might skew 
inequalities in climate adaptation. In Bangladesh, a study of flood prediction models 
found that the risk from AI systems to low-income communities was compounded 
by the systematic exclusion of informal settlements from AI data sources, as these 
settlements were often unrecorded (Rifath et al., 2024; Filippi et al., 2023).

Governance frameworks are essential to addressing these risks. European 
Union’s Artificial Intelligence Act (2021):   Transparency and Accountability in 
High-risk Applications, including Environmental Management. Conversely, pro-
grams like Microsoft’s “AI for Earth” focus on open-access tools to democratise AI 
benefits. Researchers advocate for participatory design processes which incorporate 
marginalised stakeholders in the development of AI (Smith & Iversen, 2018), as 
well as lifecycle assessments to assess AI’s carbon footprint (Hodson et al., 2023).

2.4 � Synthesis and Gaps

The existing literature highlights AI’s transformational potential but also exposes 
important gaps. First, most case studies are set in developed countries, leaving a gap 
of studies on the scalability of AI technology to low-income areas (Gruetzemacher 
& Whittlestone, 2021). Second, although technical studies abound, interdisciplinary 
scholarship—including ecological economics and AI ethics—is still relatively rare. 
Finally, long-run analyses of AI’s decoupling power are essential as global patterns 
of consumption change. The literature review positions AI as a double-edged sword: 
The tool has great potential to drive sustainable innovation, but is hampered by ethi-
cal, technical,   and governance challenges. Moving forward, equitable distribution, 
sound policy frameworks, and interdisciplinary cooperation are necessary to align 
AI use with planetary boundaries. The chapter argues that unlocking AI’s promise 
requires killer app and engineering talent. However, it also takes a rethinking of that 
growth—a new growth paradigm that puts economic and ecological integrity 
through the eye of a needle with human flourishing.
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3 � A Practical Framework to AI-Driven Sustainability 
and Growth

Stakeholders (governments, corporations, NGOs, and communities) must take a 
structured, collaborative approach at the micro and macro levels to operationalise 
AI’s potential in reconciling economic growth with environmental sustainability. 
This system of action identifies six pillars of action that can be implemented, includ-
ing more theoretical research, case studies, and morals.

3.1 � Inter-Sectoral Collaboration  & Stakeholder Involvement

Objective: Integrate AI innovations with sustainability objectives through cross-
disciplinary collaboration.

Actions:

	(a)	 Create collaborative initiatives, such as Denmark’s energy sector model, with 
public–private partnerships where AI solutions are co-developed to resolve spe-
cific sector challenges, such as integrating renewables or reducing waste.

	(b)	 Identify and curate cross-stakeholder councils between policymakers, technol-
ogists, ecologists, and societal representatives.

	(c)	 Create outbound innovation grants for startups and researchers focusing on 
“Green AI” (e.g., low-carbon algorithms or circular economy tools).

Tools: Digital matchmaking platforms for developing synergies between AI 
developers and sustainability experts (e.g., EU’s Climate-KIC).

3.2 � Data Foundations &  Availability

Objective: Develop resilient, equitable data ecosystems to fuel generative AI 
applications.

Actions:

	(a)	 Create open-access environmental data archives (e.g., NASA’s Earth Observing 
System) for AI models trained on climate, biodiversity, and resource-use 
datasets.

	(b)	 Fund IoT networks (for instance, smart sensors in agriculture or energy grids) 
to get real-time information from regions that are currently underserved.

	(c)	 Promote data  literacy programs and subsidise digital infrastructure in low-
income countries to close the AI divide.
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Tools: Blockchain that promotes transparent data governance and federated 
learning systems that enable exploitation of decentralised data while protecting 
privacy.

3.3 � AI Ethical Governance and Accountability

Objective: Scientific integrity, equity, and transparency in AI systems.
Actions:

	(a)	 Introduce mandatory lifecycle assessments for AI projects, to be undertaken at 
startup and through development, to understand not just technical but also envi-
ronmental costs (e.g., energy use, e-waste) and societal impacts (e.g., job loss).

	(b)	 Perform algorithmic audits to identify biases in sustainability tools (e.g., ensur-
ing that climate adaptation strategies help marginalised communities).

	(c)	 Ensure that AI governance is in sync with global practices, such as the EU AI 
Act, which focuses on mitigating potential risks in critical sectors (such as 
energy and agriculture).

Tools: The OECD’s AI Principles and frameworks, such as  “Green AI” certifica-
tions for algorithms that operate with a small carbon footprint.

3.4 � Analyse and Optimise the Resource Availability

Objective: Develop AI to separate economic activity from environmental destruction.
Actions:

	(a)	 Apply AI in circular economy systems: Predictive maintenance (e.g., industrial 
waste reduction) using machine learning and AI-enabled recycling (e.g., AMP 
Robotics’ waste-sorting systems).

	(b)	 Scale precision agriculture tools (e.g., crop yield predictors in India) to better 
deploy water, fertiliser, and pesticide globally.

	(c)	 Use AI to optimise smart energy grids, balancing renewable sources, storage, 
and demand (e.g., Google’s DeepMind cooling solutions).

Tools: Digital twins will simulate sustainable supply chains and reinforcement 
learning for the dynamic allocation of resources.

3.5 � Policy Integration & Capacity Building

Objective: Weave AI into the national and international sustainability agenda.
Actions:
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	(a)	 Update national climate plans (e.g., NDCs under the Paris Agreement) to add 
AI-powered decarbonisation pathways.

	(b)	 Educate policymakers about artificial intelligence with programs like the UN’s 
Capacity Development for Environment Sustainability.

	(c)	 Account for the potential introduction of regulatory sandboxes to test AI solu-
tions in controlled environments (e.g., to test AI-enabled carbon trading 
platforms).

Tools: Policy toolkits (for example, the World Bank’s “AI for Sustainable 
Development” toolkit) and subsidies for SMEs that adopt AI sustainability tools.

3.6 � Monitoring, Evaluation, & Adaptive Learning

Objective: Evaluate AI’s effectiveness over time and adjust plans accordingly.
Actions:

	(a)	 Create KPIs (carbon per GDP unit, energy per GDP unit,   etc.) to determine 
decoupling progress.

	(b)	 Leverage AI itself to assess outcomes: Use predictive analytics to monitor 
changes in deforestation or air quality associated with AI interventions.

	(c)	 Build feedback loops with communities to keep solutions socially equitable 
(e.g., participatory impact assessments).

Tools: Platforms like Microsoft’s Planetary Computer for geospatial analytics 
and blockchain for transparent impact reporting.

Governments must govern through supportive policy, corporations must favour 
long-term sustainability over short-term gain, and civil society must hold them 
accountable. Creating this integration allows AI to move from data-driven theoreti-
cal promise to practical engine of equitable, regenerative growth—showing that 
economic success and environmental health are not mutually exclusive, but mutu-
ally supportive. Figure  1 shows the framework for operationalising AI for SDG 
implementation.

4 � Implications

Incorporating artificial intelligence (AI) within strategies to balance economic 
growth and environmental sustainability is highly significant on theoretical, practi-
cal, social, and sustainable grounds. These implications shed light on opportunities 
and challenges, requiring a carefully calibrated approach to harness AI’s potential 
while managing risks.
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Fig. 1  Operationalising AI framework for SDG implementation (Source: Authors’ conception)

4.1 � Theoretical Implications

Hence, the methodological implications of AI’s role in decoupled economic activity 
through its implications across polar science facilitate challenges and enrich exist-
ing theoretical frameworks. Ecological economics, which prioritises planetary 
boundaries and questions models of infinite growth, finds empirical support in the 
science of AI as a tool for optimising resource efficiency and enabling circular sys-
tems (Costanza et al., 2020).

For example, AI-run predictive analytics cohere to the “strong sustainability” 
label, which calls for preserving natural capital (Beasley, 2021). On the other hand, 
neoclassical growth theories, typically ignorant of environmental externalities, lose 
credibility as AI presents measurable ways to internalise ecological costs (like car-
bon pricing models aided by AI), which are potentially counterproductive.

AI also reinvigorates the debate on degrowth vs. green growth. While degrowth 
advocates call for decreased consumption (Polewsky et  al. 2023), AI’s ability to 
make more productive use of increasingly limited resources fits into green growth 
narratives by showing that technological innovation can satisfy the tension between 
growth and sustainability. However, this leads to questions of “rebound effects”, 
where efficiency gains drive consumption, highlighting the demand for theories that 
include behavioural and systemic feedback loops.
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4.2 � Practical Implications

On a practical level, implementing AI requires structural changes in governance, 
industry, and the deployment of technology. Finally, policymakers must prioritise 
investments in relevant digital  infrastructure, such as IoT networks for real-time 
environmental monitoring, and adopt regulatory frameworks such as the EU AI Act 
to ensure ethical use of AI. The wind farms integrated with artificial intelligence in 
Denmark (Zhao et al., 2022), for instance, demonstrate the critical nature  of pub-
lic–private partnerships when it comes to scaling renewable energy.

The need for businesses to implement AI in the name of operational efficiency is 
creating pressure. However, businesses must balance this with ethical consider-
ations to avoid reputational damage and negative brand perception. Even lifecycle 
assessments and algorithmic audits (Hasan et al., 2022) can help to alleviate risks 
such as energy-draining data centres or biased climate models. At the same time, 
specific challenges exist for developing countries, where inclusive initiatives are 
needed to avoid creating an “AI divide”, as demonstrated by India’s AI precision 
farming projects, which present the risk of exclusion if the technology and training 
are not available equitably.

4.3 � Social Implications

Societal impact of AI will depend on inclusion and equity. Moreover, green tech and 
AI maintenance might open opportunities while they displace jobs in manufacturing 
(Qian et al., 2024). However, marginalised communities have typically suffered the 
most from both environmental destruction and denial of technology. Example: AI 
flood prediction models in Bangladesh neglected informal settlements due to lack of 
data, which increased vulnerabilities.

Ethical governance must be the foundation for avoiding such disparities. AI tools 
co-developed between communities and institutions via participatory design pro-
cesses can ensure local and community-facing solutions. Moreover, AI literacy pro-
grams and social safety nets should be implemented to train workforces for 
transitional industries. This dual imperative is clear as AI should enhance equity 
while avoiding entrenching existing power asymmetries.

4.4 � Sustainable Implications

AI must drive systemic change for long-term sustainability without adding to the 
environmental damage it solves. AI contributes to optimising energy grids and 
reducing waste (for example, Google achieved a 40% reduction in cooling costs 
using DeepMind). However, the carbon footprint of this technology is a concern. 
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The energy costs of training large AI models can counteract benefits. Unless pow-
ered by renewables, training large AI models uses massive energy, offsetting gain 
(Dhar, 2020).

The role of other technologies in achieving the SDGs. AI’s potential in achieving 
the SDGs is promising but hinges on holistic policies. AI-augmented circular econ-
omies, for instance, can minimise material loss (SDG 12), while predictive climate 
modelling can enhance disaster resilience (SDG 13). However, success will need 
metrics to monitor absolute decoupling—not just improvements in efficiency—and 
policies to limit rebound effects.

AI in balancing growth and sustainability has complex and interconnected impli-
cations. AI is theoretically reactionary to the growth model but a practical way of 
sustaining it. In practice, it requires investment in infrastructure and ethical leader-
ship. This needs inclusive design to avoid inequality on the socio level. From the 
green perspective, its advantages depend on renewable energy integration and strict 
impact assessments. A unified energy—integrating policy, innovation, and justice—
is critical to enabling AI as a driver towards a regenerative tomorrow where eco-
nomic and ecological priorities are symbiotic.

5 � Conclusion

Balancing economic growth with environmental sustainability is one of the signifi-
cant challenges of the twenty-first century. In this regard, artificial intelligence, with 
its unparalleled capabilities to analyse data, optimise systems, and predict encoun-
ters, emerges as a groundbreaking accelerant. AI will manifest meaningful path-
ways of decoupling prosperity from environmental impact by enabling resource 
efficiency, progress in renewable energy integration, and driving circular econo-
mies. From Denmark’s smart grids to India’s AI-driven agriculture, case studies 
highlight its potential to accelerate sustainable innovation while stabilising eco-
nomic resilience.

However, the promise of AI comes with peril. Its energy-hungry infrastruc-
ture,   dangers of algorithmic bias, and potential for exacerbating global inequities 
require vigilant governance. Ethical frameworks like the EU’s AI Act and “Green 
AI” initiatives emphasise investing in energy-efficient technologies and inclusive 
design. Socially, compelling vulnerable communities to stay behind because a small 
elite now owns the means of production reminds us of the importance of policies 
that protect those who are replaced by technology, as well as social safety nets and 
participatory decision-making.

AI is a tool, not a panacea, that must be used with intention and humility. Its suc-
cess depends on collaboration: the government needs to implement progressive 
policies, businesses must innovate within the planet’s limits, and civil society must 
hold power structures accountable. By embedding equity, transparency, and eco-
logical ethics in the development of A.I., humanity could thread the narrow needle 
that represents the balancing act of our age. Guide to New Landscapes The way 
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ahead requires technical expertise and a new vision of progress in which economic 
growth is a way to sustain life, not destroy it. The marriage between natural resources 
and human invention may be the most critical piece of a sustainable, regenerative 
future that we can have.
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1 � Introduction

We have reached a critical moment in time for humanity at the intersection of the 
climate emergency and accelerating technological change (Borgia et al., 2024). At 
the same time, the status quo sustainability solutions—where carbon emissions in 
Joe Biden’s words are brought to net-zero via incremental policymaking or one-off 
technological breakthroughs—are not sustainable against the backdrop of climbing 
global carbon emissions, far beyond a conceivable planetary band (Das, 2020). 
Digital photosynthesis, a metaphor where digital Yoda, known as artificial intelli-
gence (AI), has the power to change things, just as nature uses solar energy to con-
vert into food that helps life (Das, 2023). Similar to biological photosynthesis, 
which sequesters carbon dioxide to generate oxygen, AI-powered systems provide 
a roadmap to sequester the complexities of contemporary emissions and transform 
them into sustainable, circular economies (Das, Di Virgilio, et  al., 2024). 
Transitioning from a tool-centric view of technology to one of structure, this chapter 
describes the use of AI to re-imagine the structural elements of urban environments, 
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agricultural ecosystems, and transportation systems that will ultimately lead us to a 
carbon-neutral world (Das, Mondal, et al., 2024).

Climate change is becoming an inescapable fact that requires radical rethinking. 
With atmospheric CO₂ concentrations surpassing 420  ppm and projected global 
temperature increases of 2.7 °C by the end of the century, the mitigation phase-out 
window has closed. Conventional approaches are fragmented and reactive, failing to 
grapple with the interdependencies of economic growth (Di Virgilio & Das, 2023b), 
resource consumption, and ecological decline (Das et al., 2023). In this context, AI 
acts as a catalyst for systemic change. Through big data analysis, predictive analyt-
ics, and machine learning, AI moves beyond simple linear problem solving to create 
fluid, adaptive systems that ensure human endeavour can be harmonised with plan-
etary health (Di Virgilio & Das, 2023a). In this chapter, we will argue that the true 
potential of AI is in its holistic synthetic capacity, stitching together financial mod-
els and urban design, to environmental science, producing regenerative frameworks.

1.1 � AI: The Designer of Sustainable Systems

AI’s role in three of these critical domains is encapsulated in the metaphor of the 
digital photosynthesis:

Smart Cities: AI-Enhanced Urban Ecosystems
Today, cities, accounting for 70% of global emissions, are not only the problem but 
also the solution (Majerova & Das, 2023a). AI transforms the urban landscape by 
considering how to distribute it in an energy-optimised way, automating renewable 
energy integration, and facilitating the design of compact, transit-oriented commu-
nities (Majerova & Das, 2023b). AI is managing real-time data to balance supply 
and demand in smart grids, avoiding waste in construction, and simulating low-
carbon layouts for cities (Mondal, 2020).

Renewal in Agriculture: Precision and Regeneration
Agriculture is a significant emitter and a prime candidate for AI-driven transforma-
tion. Precision farming (Mondal, Das, & Vrana, 2023) driven by AI’s recommenda-
tions on soil health, weather patterns, and crop genetics reduces water consumption 
(Mondal et al., 2024), fertiliser runoff, and land degradation. However, efficiency is 
only part of the picture AI allows for regenerative practices (Mondal & Das, 2023a), 
like carbon-capture farming and biodiversity monitoring, transforming farms from 
carbon emitters into carbon sinks (Mondal & Das, 2023b).

Transportation Networks: Agile and Adaptive Transportation
Fifteen years later, transportation is responsible for 20% of global emissions. 
Generative AI is an innovation that reengineers mobility through intelligent traffic 
management, autonomous electric vehicle fleets, and predictive logistics (Mondal 
& Das, 2023c). AI reduces emissions by optimising routes, cutting idle times, and 
syncing transit systems when renewable energy is available (Mondal et al., 2022).
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Diverse Collaboration: The Bedrock of AI’S Triumph
It is not the strength of AI in itself, but the blending of different disciplines with it. 
Financial theories, for example, guide AI algorithms to price carbon externalities, 
reward investments in green technologies, and de-risk sustainable businesses 
(Mondal, Yegen, & Das, 2023). Urban development approaches help guide equita-
ble access to green spaces and housing, and AI tools need to be designed with the 
possibility of exacerbating social divides in mind (Mondal & Sahoo, 2019). 
Environmental science anchors AI models into ecological thresholds, so innova-
tions respect the planet’s limits (Nadanyiova & Das, 2020). It broadens AI from a 
technical curiosity into a cross-discipline lens, informing economically sustainable, 
socially equitable, and environmentally sound decisions (Tandon & Das, 2023).

A Holistic Economic Framework
This chapter will argue that a carbon-neutral economy is not some far-off utopia, but 
an actionable blueprint. Through systems thinking, AI connects particulars of 
micro-level efficiencies to holistic macro-level sustainability objectives (Vrana & 
Das, 2023a). For example, the predictive power of AI allows cities to simulate cli-
mate resilience strategies, farmers to embrace circular economies, and governments 
to model decarbonisation pathways (Vrana & Das, 2023b). Importantly, these sys-
tems are iterative, learning from real-world feedback to adapt as conditions change 
(Yegen & Das, 2023).

With ecological tipping points looming, AI is no longer simply a source of incre-
mental progress, and instead offers the tantalising prospect of digital photosynthe-
sis: a biomechanistic vision in which technology and nature coalesce in symbiotic 
harmony. This chapter highlights the importance of working together for policy-
makers, technologists, and community members to scale these solutions and imple-
ment AI ethically. The answer is to architect an economy that respects and operates 
within Earth’s metabolic limits by marrying innovation with interdisciplinary wis-
dom. The path to carbon neutrality is far from simple, but with AI as our roadmap, 
it is attainable.

The following chapters explore how AI-optimised systems work, AI optimisa-
tion’s financial and scientific foundations, and transformative policies for convert-
ing this blueprint into reality. We have entered the era of digital photosynthesis.

2 � Review of Literature: The Factors that Are Determined 
to Enable AI to Achieve Carbon Neutrality

Interdisciplinary innovation is essential to create a carbon-neutral economy, with 
artificial intelligence (AI) as a key enabler. Based on this literature review, we found 
that many technological, economic, and environmental aspects of AI will play a role 
and will eventually drive AI technology to sustainability in sectors like urban plan-
ning, agriculture, transportation, and interdisciplinary systems. Synthesising 
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peer-reviewed literature, the analysis illustrates how AI-based solutions tackle sys-
temic problems while also pinpointing holes in the research conducted to date.

2.1 � AI-Optimised Urban Planning

Urbanisation’s environmental footprint—70% of global CO₂ emissions—has moti-
vated research into whether AI can reengineer cities. According to Bennagi et al. 
(2024), AI-enabled smart grids balance energy supply and demand in real time and 
provide renewable energy sources, mainly solar and wind, with 90% efficiency ben-
efits. As Kandt and Batty (2020) show, machine learning models simulate low-
carbon urban layouts and optimise building density, green spaces, and public transit 
networks. These systems diminish energy wastage and emissions while increasing 
liveability (Karuna et al., 2024). AI makes resource management more manageable, 
too. Predictive analytics, for example, reduce waste on construction sites by accu-
rately predicting material needs (Lan, 2024), and real-time traffic algorithms reduce 
vehicle emissions by 15–20% (Kanungo, 2024). However, as Bina et  al. (2019) 
critique, there is a techno-utopianism of “smart city”, placing equity at the centre of 
AI urbanism so as not to deepen social divides.

2.2 � Sustainable Food Production 
and AI-Enabled Regeneration

AI’s accuracy is needed to reduce environmental impact with agriculture responsi-
ble for 24% of greenhouse gas emissions. Kanojia et al. (2024) note that in precision 
farming, AI facilitates using sensors and satellite data to steer strategies for watering 
crops, saving up to 30% in overall water use. This has been used to predict crop 
yield with 95% accuracy (Jabed & Murad, 2024), which helps prevent over-
fertilisation and methane emissions.

In addition to efficiency, AI allows for regenerative practices. Carbon-capture 
farming, reviewed by Paul et al. (2023), provides soil carbon sequestration potential 
mapping through AI-driven models. Meanwhile, neural networks can also track bio-
diversity loss–directions towards agroecosystem research (Branco et al., 2023). On 
the other hand, rural digital divides constrain uptake in low-income areas (Ferrari 
et al., 2022) and highlight the imperative for a human–machine interactive approach.
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2.3 � Green Transportation Networks

AI’s ability to upend systems of mobility is essential to transportation decarbonisa-
tion. Rahman and Thill (2023) connect AVs with electric vehicles (EVs) to a 50% 
decrease in emissions in an urban area under a shared economy, i.e., an urban area 
where a ride-sharing algorithm supports the use of an AV. AI enables optimal sched-
uling of EV charging to coincide with renewable energy supply, reducing the strain 
on the grid (Shaheen et al., 2024).

Reinforcement learning in freight logistics saves fuel by optimising delivery 
routes (Yan et al., 2022). Impact of AI and Machine Learning on Environmental 
Sustainability and climate (Bolón-Canedo et al., 2024) and in AI-based traffic man-
agement decreased emissions up to around 25% by preventing traffic jams. Bao 
et al. (2022) warn that AI will only worsen vehicle miles travelled unless policies 
prioritise public transit over private independence.

The power of AI depends on combining economics, environmental science, and 
policies to promote AI-driven carbon pricing schemes that internalise ecological 
costs. At the same time, Elert and Henrekson (2022) identify AI’s usefulness in de-
risking green investments through predictive market analytics.

Environmental science is about providing vital guardrails. Rockström et  al. 
(2009) remind us that AI systems must harmonise with planetary boundaries, ensur-
ing that solutions such as carbon capture do not set off ecological feedback loops. 
Urban studies researchers like Broto and Marvin (2024) advocate for participatory 
AI frameworks to facilitate equitable access to sustainability benefits, including 
clean energy and affordable housing.

2.4 � Gaps and Future Directions

Although the literature extensively investigates technical feasibility, three gaps 
remain. First, sociotechnical implications of AI (e.g., data privacy, labour displace-
ment) are underexplored (McLeod, 2021). Second, scalability is unproven, as most 
studies consider pilot projects instead of systemic implementation (Woltering et al., 
2019). Third, various financial, ecological, and urban paradigms can integrate, yet 
interdisciplinary collaboration is often theoretical with limited empirical models 
(Asadzadeh et al., 2023).

AI’s capability to enable carbon neutrality has been well-established in urban, 
agricultural, and transportation spaces. However, its success depends on integrating 
disciplines, equitable governance, and scalable policies. Future research must 
emphasise ethical frameworks and real-world testing to move theoretical “digital 
photosynthesis” into actual climate action.
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3 � An Autonomous Framework for Achieving Carbon 
Neutrality Using Artificial Intelligence

This framework combines technological innovation, policy alignment, and collabo-
ration between stakeholders within the urban, agricultural, and transportation sec-
tors to make these factors of AI-driven carbon neutrality practically useful, it is 
based on interdisciplinary research on scalability, equity, and adaptability. Figure 1 
explains the core components for proposing a framework. Figure 2 shows the imple-
mentation phases.

3.1 � Core Components

(a) AI-Integrated Urban Planning
Smart Grid Optimisation: Artificial intelligence (neural networks) is used for effec-
tive resource management to adjust renewable source energy supply (coastal, wind) 

Fig. 1  AI-driven carbon neutrality and its components (Source: Authors’ conception)
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Fig. 2  Implementation phases of AI and sustainability (Source: Authors’ conception)

and real-time demand against each other. Anticipate peak loads with predictive ana-
lytics and automate the distribution of storage.

Implementation: IoT sensors retrofitting of the existing grids, and ownership of 
machine learning algorithms (Kolla et al., 2022).

Dynamic Zoning and Transit Design: Using generative AI to map and simulate 
low-carbon urban density layouts (15-minute cities → mixed-use zoning, electric 
public transit corridors).

Implementation: Municipalities can use AI tools, such as Urban Footprint, to 
simulate emissions reductions in compact urban designs.

(b) Sustainable Agricultural Production Systems
Precision Farming Networks—Providing farms with an IoT sensor suite and an AI 
platform (Farm Beats, for example) specialising in dynamic irrigation, fertiliser 
administration, and dynamic crop rotation. Predicting soil carbon potential with 
satellite imagery and machine learning.

•	 Data: AI tools in smallholder agriculture need peer-based data-sharing (Spanaki 
et al., 2021), preferably non-commercial, in a way which allows for their repro-
duction and adaptation.

•	 Implementation: Governments and NGOs can subsidise complementary sensor/
AI tools for smallholders, combined with training programmes to remedy the 
rural digital divide (Van Noordt et al., 2023).

•	 Transfer: AI/ML often perform better as they accumulate data; how can we sup-
port those that can move down these paths and those that cannot? (Tweed, 2025).

Digital Photosynthesis: AI’s Blueprint for a Carbon-Neutral Economy



152

Carbon Farming Incentives: Create blockchain—empowered platforms that can 
validate and commodify carbon credits based on regenerative methods (cover crop-
ping, agroforestry, etc.).

Implementation: We can create transparency and farmer buy-in by linking car-
bon credit markets to AI-monitored farm data.

(c) Green Transportation Networks
•	 AI-Driven Electric Vehicle (EV) Fleets: Leverage AI to manage EV-sharing hubs 

in urban environments, employing reinforcement learning algorithms to deter-
mine the optimal fleet distribution and charging plan.

•	 Implementation: Collaborate with automotive manufacturers (Tesla, BYD) and 
ride-sharing platforms (Uber, Lyft) to pilot data-side autonomous EV corridors.

•	 Smart Freight Logistics: Use AI route optimisation tools (e.g., OptimusRoute) to 
reduce shipping fuel consumption. Focus on maintaining rail and electric truck-
ing for haul routes.

•	 Corporate measures: A tax incentive or an emissions penalty for freight compa-
nies to adapt AI logistics tools.

(d) Interdisciplinary Collaboration
•	 Simulation of Dynamic Carbon Pricing: Implement AI to monitor and model 

carbon pricing experiments based on real-time emissions and economic feed-
back loops.

•	 Ethical AI Oversight: Create cross-disciplinary councils (tech companies, law-
makers, NGOs) responsible for auditing AI systems for bias, privacy violations, 
and environmental compliance.

3.2 � Implementation Phases

Section 1: Pilot Testing (Years 1–3):

	(a)	 A selection of 3–5 cities/regions testbeds (e.g., Copenhagen, Singapore).
	(b)	 Establish AI-oriented smart grids and EV-sharing pilots.
	(c)	 Train farmers in using precision agriculture tools on mobile apps.

Scaling (Years 4–7):

	(a)	 Scale successful pilots nationally with public–private partnerships (PPPs) for 
funding.

	(b)	 Implement AI-powered carbon taxes and blockchain carbon markets.

Monitoring and Adaptation (Years 8–10):

	(a)	 Employ AI to monitor progress on IPCC thresholds, adjusting models through 
accurate world data.

	(b)	 Incorporate feedback loops to solve equity gaps (e.g., fuel poor access to EV 
infrastructure).
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3.3 � Key Enablers

	(a)	 Policy: Update building codes and farm subsidies to mandate the adoption of AI 
in urban planning and agriculture.

	(b)	 Funding: Utilise private green-bond and climate funds (e.g., Green Climate 
Fund) to invest in AI infrastructure.

	(c)	 Education: Establish workforce training programmes for careers that promote 
sustainable AI (e.g., certifications for “green data scientists”).

3.4 � Challenges and Mitigation

	(a)	 Data Privacy: Decentralised AI frameworks (e.g., federated learning) can be 
used to prevent user data from being exposed.

	(b)	 Interoperability: Establish standard data formats across different sectors to 
facilitate seamless integration of AI.

	(c)	 Equity Risks: Dedicate 20% of AI sustainability budgets to under-resourced 
communities.

Framed this way, it translates the theoretical potential of AI into actionable steps, 
distinguishing between near-term win-win opportunities (smart grids) and ultimate 
systemic change (carbon pricing). By bringing together technology, policy, and eth-
ics, it provides a replicable model for carbon neutrality around the globe. Success 
depends on political will, cross-sector collaboration, and ongoing public engage-
ment to ensure equitable outcomes.

4 � AI-Driven Carbon Neutrality: Theoretical, Practical, 
Social, and Sustainable Implications

(a) Theoretical Implications
The AI-assisted carbon neutrality framework disintegrates traditional siloed 
approach to sustainability and defers a novel multidisciplinary paradigm. Systemic 
sustainability: an integrated model drawing on AI, environmental science, urban 
planning and economic theories that collectively reshape the paradigm of systemic 
sustainability Also, the idea of digital photosynthesis—where AI is a force scalable 
with nature to energy conversion (and photosynthesis)—allows a new theoretical 
framework to be placed that reconciles technological evolution with ecological 
dynamics. The method debunks incremental models on policy, proposing dynamic 
adaptable systems based on predictive analytics and machine learning. The frame-
work preserves environmental limits and combines its work with the Rockström’s 
planetary boundaries theory, leveraging AI as a solution while embracing a 
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discussion of sustainability through interdisciplinary solutions and before-
threshold action.

(b) Practical Implications
As much as the framework requires significant infrastructural and policy changes. 
AI-optimised smart grids and EV fleets require investments in IoT sensors, renew-
able energy infrastructure, and workforce training upfront. Pilot projects in cities 
like Copenhagen could test scalability, but data interoperability (e.g., standardising 
energy grid data with transportation systems) will face problems similar to high 
initial costs. Policy reform such as carbon taxes and green subsidies among others 
is essential to make adoption attractive. For example, the blockchain-enabled car-
bon credit system for farmers needs regulatory support to maintain transparency. 
However, risks such as electronic waste from IoT devices and energy-guzzling AI 
data centres spur lifecycle assessments to ensure that their environmental impact is 
not counterproductive.

(c) Social Implications
Socially, the framework brings opportunities, but also equity issues. Urban AI 
implementations can improve quality of life by reducing pollution and providing 
access to green spaces and mobility; however, marginalised communities may face 
exclusion, as specific “smart” infrastructure, like EV-sharing hubs or smart grids, 
may be rolled out through affluent areas first. However, while the digital training of 
smallholder farmers through NGO programmes can help bridge rural digital divides, 
AI and automation could displace jobs in the agriculture and logistics sectors. For 
example, decentralised AI (e.g., federated learning) can provide data privacy during 
localised climate action. For instance, equitable resource allocation—such as invest-
ing 20% of AI initiatives in underserved areas—is crucial in ensuring that these 
technologies do not serve to compound socio-economic disparities.

(d) Sustainable Implications
From a sustainability standpoint, the framework’s success depends on balancing 
technological efficiency and ecological stewardship. Precision agriculture based on 
artificial intelligence could lower water use by up to 30% and increase the carbon 
sequestration potential of soils, directly supporting the SDGs. However, scaling EV 
production threatens a depletion of resources (e.g., lithium mining) and waste. AI 
deployments must follow circular economy principles, such as recycling retired EV 
batteries. The framework is aligned with long-term planetary boundaries, ensuring 
that the solutions remain within the Earth’s carrying capacity.

The AI-empowered carbon neutrality roadmap also defines a new narrative of 
eco-sustainability that will influence interdisciplinary new thinking and models; this 
will need to be backed up by infrastructural and policy innovation alongside. 
Socially, it balances equality risks against quality-of-life dividends; sustainably, it 
reconciles technological potential with ecological limits. Taken together, these 
dimensions suggest that the carbon neutrality framework crystallises the fact that 
this endeavour represents both a technical challenge and a socio-ecological trans-
formation that will require coordination, flexibility, and ethical vigilance across 
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multiple domains. Success will be measured in turning theoretical ambition towards 
action that is singularly inclusive and collectively scalable—a feat as ornate as the 
systems it seeks to distil.

5 � Conclusion

Digital photosynthesis—the concept that AI could replicate nature’s efficiency and 
convert carbon emissions into sustainable systems—offers not just a technological 
breakthrough, but a radical rethinking of what humanity’s relationship to the planet 
might look like. PNAS Future Climate is based on the realisation that AI is not 
inevitable nor a cure-all, but rather a transformational tool that can expedite the 
transition to carbon neutrality if integrated with ecological values, wise governance, 
fair markets, and cross-disciplinary creativity. Mixing urban planning, agriculture, 
transportation, and socio-economics theory, the framework fashions AI as architect 
of systems that are adaptive and resilient enough to be likened the ecosystems 
they model.

The main feature of this paradigm shift is its theoretical progress. In contrast, 
conventional sustainability models, which are compartmentalised and reactive, can-
not deal with the interlinked crises of climate change, resource depletion, and social 
inequity. AI system capability fills these voids and delivers agile solutions that bal-
ance economic development with planetary boundaries. AI-enabled carbon pricing 
models, for example, translate our climate cost to our bottom lines at the speed of 
transactions, while predictive analytics make certain that our urban plans evolve 
with the new reality a changing climate brings. These innovations push policymak-
ers and scholars to exit silos and develop systems-level frameworks that sit at the 
intersection of technology, ecology, and equity.

In practice, however, the framework’s sequenced rollout, beginning with pilot 
cities and followed by global scaling, invites a unique level of collaboration. Public–
private partnerships mobilise green financing to retrofit infrastructure; national gov-
ernments pass legislation mandating AI integration in agriculture and logistics. Pilot 
projects—AI-optimised smart grids in Copenhagen and blockchain-enabled carbon 
farming in Kenya—play test monitors that sharpen technologies and policies. To 
succeed, we need to tackle data silos, AI’s greed, and resource plundering. Examples 
in this area include federated learning solutions or circular economy principles for 
EV batteries and demonstrate innovative ways to mitigate risks while remaining 
aligned to sustainability goals.

Puzzle things together—preferably drawn by the artist—why the transition is 
perceived as inevitable. Or, on AI, AI can democratise access to clean energy and 
precision farming tools but is at risk of widening inequalities if deployed without 
guardrails. It is crucial that marginalised communities worst impacted by climate 
change have the opportunity to work with technologists as partners to co-design 
AI-driven solutions in order to bend the outputs of technology around them and 
ensure that new technologies from autonomous EV fleets to smart grids really meet 
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their needs. Ethical governance frameworks, such as regular and inclusive AI audits 
and varied policy councils, ensure that we do not allow for algorithmic bias or the 
exploitation of the data. Just as importantly, the demand for reskilling the workforce 
will help workers displaced in traditional agriculture or logistics jobs find some-
thing new to do, to ensure that the green transition is a glue that holds society 
together, not a wedge that pulls it apart.

Ultimately, the framework’s success depends on finding a balance between ambi-
tion and humility from the perspective of sustainability. Although AI can optimally 
harness renewable energy or restore degraded soils, it cannot exceed ecological 
boundaries. Improper systemic emissions have been undermined by a techno-fix 
paradigm such as carbon capture. In this regard, AI must operate within guardrails 
provided by environmental science, which would ensure that breakthroughs in areas 
such as carbon farming or smart cities protect rather than destroy natural cycles. We 
require AI feedback loops for ongoing surveillance, evolution, and global coopera-
tion to share data and resources, so that solutions evolve to suit a new dynamic 
world bursting with climate potential volatility.

The future—which can be “digital photosynthesis”—is not a dystopia in some 
distant future, but rather a delectable evolution of interactivity we could create! The 
road to carbon neutrality isn’t paved with compromising measures; it takes audacity 
to rewire economies, rethink policies, and recast what progress means, and pru-
dence to centre equity and ecological integrity, as AI has its guide. Applying various 
practices is the path forward, not necessarily in a linear manner, nor a guaranteed 
approach, but a viable strategy. However, through technological ingenuity and ethi-
cal stewardship, humanity could work to harness AI as a partner, not a master, to 
help shape a global economy that operates within the limits of the planet. What is 
required now is not yet another incrementalism, but symbiotic sustainability.
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1 � Introduction

Against the backdrop of ever-worsening climate emergencies, depletion of natural 
resources (Borgia et al., 2024), and a societal outcry for ethical business practices, 
the pressing need for sustainable transformation within industries is becoming 
increasingly critical. Traditional industrial and supply chain models (Das, 2020), 
marked by inefficiency, waste, environmental damage, and social inequity (Das, 
2023), have become increasingly untenable. However, a possibility exists within 
this challenge: embracing artificial intelligence (AI) within operational frameworks 
represents a revolutionary opportunity to reconcile economic advancement with 
planetary caretaking (Das, Di Virgilio, et  al., 2024). Intelligent Transformation: 
Using Our Digital Intelligence to Drive Process Innovation explores how AI is 
transforming the workings of production (Das, Mondal, et al., 2024), logistics, and 
resource management (Das et al., 2023). Thus, sustainability is no longer a compro-
mise but an enabler of innovation and resilience (Di Virgilio & Das, 2023a).

AI has found its way into factory systems, changing the game from reactive to 
proactive optimization (Di Virgilio & Das, 2023b). Through machine learning, neu-
ral networks, and advanced data analytics, industries can evolve from legacy 
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approaches that focus mainly on short-term gains to dynamic architectures that pre-
dict disruptions (Majerova & Das, 2023a), eliminate waste, and comply with inter-
national sustainability goals. In this chapter, we examine where AI serves as an 
accelerator for this shift (Majerova & Das, 2023b), helping organizations crack the 
code of hard-to-interpret variables—from energy consumption trends to supply 
chain vulnerabilities—to convert insights into operational strategies (Mondal, 
2020). AI sits at the intersection of theoretical sustainability commitments and tan-
gible outcomes, enabling systems that are both economically sustainable and envi-
ronmentally restorative (Mondal, Das, & Vrana, 2023).

Theoretical frameworks from operations research and environmental impact 
studies serve as scaffolding for understanding AI’s potential of AI (Mondal et al., 
2024). Operations research, centered on mathematical optimization and decision-
making, complements AI’s ability to process large datasets and simulate scenarios 
in real time (Mondal & Das, 2023a). Simultaneously, methodologies for assessing 
environmental impacts, such as life-cycle assessment (LCA), are becoming more 
precise as AI-driven analytics use readily available quantitative data to analyze 
emissions, resource consumption, and ecological footprints with unprecedented 
detail (Mondal & Das, 2023b). Coupled with this, these disciplines provide the 
foundation for the ability to manage the trade-off between efficiency and sustain-
ability through underpinned models that have lower carbon intensity while sustain-
ing competitive productivity (Mondal & Das, 2023c).

Practically, the application areas of AI vary across sectors (Mondal et al., 2022). 
In manufacturing, predictive maintenance algorithms predict equipment failure, 
reduce downtime, and prevent the overuse of resources (Mondal, Yegen, & Das, 
2023). Data helps neural networks optimize production schedules to coincide with 
renewable energy availability, so that less electricity is drawn from fossil fuel 
sources (Mondal & Sahoo, 2019). In the construction sector, AI is used for the effi-
cient utilization of materials; through generative design, less efficient materials are 
identified and eliminated, and smart sensors monitor pollutants to assess emissions 
(Nadanyiova & Das, 2020). Transportation and logistics have route optimization 
algorithms that reduce fuel consumption and AI-driven demand forecasting, in 
which just-in-time ships minimize overproduction (Tandon & Das, 2023). Every 
use case illustrates the versatility of AI in overcoming sector-specific challenges 
while promoting cross-sector sustainability goals (Vrana & Das, 2023a).

To anchor these ideas, this chapter provides case studies from corporations and 
supply chains around the world. For example, a multinational manufacturer saw a 
30% drop in energy expenses after applying AI for real-time optimization of its 
processes. A logistics company can reduce carbon emissions by 25% by applying 
machine learning to optimize route planning (Vrana & Das, 2023b). These exam-
ples demonstrate not only the technical capability of AI but also its ability to scale 
across different organizations and settings, which suggests that scalable solutions 
exist across industries.

Drawing on peer-reviewed research, corporate sustainability reports, and inter-
views with practitioners, blending academic rigor and industry insights adds to a 
formidable analysis that traces entrepreneurial virtues in practice. This 
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multidisciplinary framework better illuminates the intricacies of AI implementa-
tion, from algorithmic design to workforce adaptation, while revealing the synergies 
between technological innovation and policy frameworks (Yegen & Das, 2023).

On balance, this chapter argues that the role of AI in this journey goes beyond its 
role as a mechanism of incremental advancement. This is the beating heart of sus-
tainable industrial evolution. By converting data into foresight and uncertainty into 
opportunities, AI enables the industry to balance profitability with planetary health. 
We are discussing making a change, as described in this and the following sections, 
of blending intelligent system solutions with a more sustainable approach to doing 
things—a combination that we believe will position you as a new standard for 
global business resilience.

2 � Literature Review

It is necessary to combine vital factors at the technological, organizational, and 
environmental levels to lay the groundwork for a practical framework for bridging 
AI and traditional industrial and supply chain systems toward sustainability. The 
current literature reveals the interconnected nature of these dimensions, suggesting 
that successful implementation of AI is only possible if adequate emphasis is placed 
on aligning the underlying technical capabilities with relevant strategic governance, 
multi-stakeholder collaboration, and regulatory ecosystems that promote flexibility 
and adaptability. This review synthesizes insights garnered from operations research, 
environmental science, and organizational theory to identify the critical components 
for developing actionable frameworks.

Just as revenue-sharing models helped disrupt industries, data infrastructure and 
machine-learning algorithms were two technological enablers for this new busi-
ness model.

A basic factor is a strong data infrastructure at work. Artificial Intelligence (AI) 
relies on high-quality, real-time data pulled from IoT sensors, enterprise systems, 
and external databases (Tavakoli et  al., 2024). Studies emphasize that data from 
legacy systems, such as those used in the manufacturing sector, should be interoper-
able with AI platforms to avoid the creation of data silos and enhance the applica-
tion of AI in the organization (Irani et al., 2022). For example, in manufacturing, 
predictive maintenance combines IoT sensors with machine-learning models, which 
require seamless data pipelines.

However, algorithmic transparency and explainability are pressing issues. 
Studies have shown that “black-box” AI systems undermine trust and regulatory 
compliance, especially in sustainability-related contexts, where accountability is 
necessary (Shin, 2020). XAI frameworks (e.g., LIME or SHAP) are essential for 
validating sustainability outcomes, where stakeholders can audit emissions capture 
and resource savings (RoX, 2024). Scalability is also critical; neural networks 
trained for energy efficiency in one facility must be applied across heterogeneous 
global supply chains and require minimal retraining (Sharma & Garg, 2020).
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2.1 � Leadership and Culture Shifts: 
An Organizational Readiness

Leadership commitment, workforce readiness, and other organizational factors are 
frequently mentioned as barriers or accelerators. According to Schweiger et  al. 
(2020), companies with sustainability-AI taskforces, which bring together data sci-
entists and operations managers, were able to implement sustainability AI much 
faster. Change management theories, including well-known ones such as Kotter’s 
8-Step Model, emphasize the importance of creating a sense of urgency around 
sustainability goals as a critical way to build engagement (Graves et al., 2023).

Cultural resistance to the adoption of AI, particularly across traditional industries 
such as construction or heavy manufacturing, presents a challenge. This risk can be 
mitigated by upskilling employees through training programs on AI literacy and 
sustainability metrics (Barnes et al., 2024). For example, Siemens’ AI-driven facto-
ries bring together upskilling and AI/process optimization initiatives, underpinned 
by a culture of innovation.

2.2 � Policy Alignment with Environmental 
and Regulatory Frameworks

The design of sustainability frameworks must consider and comply with norms and 
regulations applied across global boundaries. The literature stresses how LCA 
methodologies are imperative in contextualizing and leveraging AI applications to 
minimize impact (Pavlovskaia, 2014) and how dynamic modeling of supply chain 
emissions through AI-enhanced LCAs brings compliance with regulations such as 
the EU’s Corporate Sustainability Reporting Directive (CSRD).

Simultaneously, regulatory fragmentation presents a challenge. This makes the 
multinational implementation of carbon accounting or ethical AI (Xu, 2024) diffi-
cult owing to varying regional standards. To ensure that everyone is on the same 
page in AI-powered sustainability reporting, researchers have promoted harmonized 
metrics (Van Wynsberghe, 2021).

2.3 � Stakeholders’ Collaboration and Value Chain Integration

Impact of AI on sustainability multiplies when applied to value chains. Shareable 
frameworks help organize data-sharing networks and coordinate suppliers, distribu-
tors, and customers to optimize flows of resources in “ecosystem AI” (Vinuesa 
et al., 2020). For example, Walmart’s blockchain-AI system for supply chain trans-
parency minimizes food waste by 20% through supplier engagement.
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The literature also emphasizes the role of public–private partnerships. GovAI 
initiatives such as Singapore’s AI for Sustainable Urban Systems demonstrate how 
government data pools can co-develop scalable solutions with industry expertise 
(Ali et al., 2020).

2.4 � Ethical and Economic Trade-Offs

Implementable frameworks must tackle ethical quandaries, such as vulnerable jobs 
lost to automation, if algorithms abuse ecological injustice. Studies advocate for 
“ethics by designing” AI frameworks that incorporate fairness audits and inclusive 
stakeholder consultations (Tripathi & Kumar, 2025). Cost–benefit analysis is eco-
nomically crucial. Regarding long-term operational costs, AI reduces overhead, and 
the investment needed for infrastructure and training can be prohibitive for SMEs. 
This calls for dynamic ROI models that can measure gains in sustainability, such as 
carbon credits or brand equity, to justify one’s expenditure (Mavarick & 
Mavarick, 2025).

The authors settled on the literature that calls for interdisciplinary frameworks 
that consider both technical feasibility and socio-environmental responsibility. 
Best-in-class models, like the “AI Sustainability Toolkit” from the Partnership on 
AI, involve a combination of modular AI solutions, stakeholder governance boards, 
and adaptive policy interfaces. Recognizing these considerations, technological 
readiness, organizational agility, regulatory coherence, collaborative ecosystems, 
and ethical safeguards, this framework is emerging as a roadmap for translating the 
theoretical AI potential into tangible sustainability outcomes.

3 � Framework for Sustainable Transformation in Industries 
and Supply Chains Through AI-Driven Innovation

The challenge of turning AI’s promise of sustainability into reality will require orga-
nizations to adopt a structured, interdisciplinary framework that balances techno-
logical continuation, organizational capacity, stakeholder collaboration, and ethical 
responsibility. This five-pillar framework lays out actionable steps for embedding 
AI into industrial and supply chain systems to realize measurable outcomes for 
sustainability.
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3.1 � Foundational Enablers: Technology Readiness 
and Governance

(a) Data Infrastructure & Interoperability
Sensor the new normal: Sensor the entire supply chain using IoT devices, set up 
cloud data lakes for integrated sensors across the supply chain, and deploy the 
blockchain based on specific requirements of network actors.

Establish interoperability between legacy systems and AI tools (APIs for ERP 
integration, for example) for the adaptive dissolution of silos and smooth data 
recycling.

(b) AI Tool Development
Invest modular AI features designed for use: predictive maintenance systems for 
production, route optimization systems for logistics, and generative design engines 
for construction.

XAI—Use XAI frameworks (SHAP, LIME, etc.) to maintain transparency in 
sustainability outcomes (carbon reduction, waste reduction, etc.)

(c) Governance & Compliance
Build cross-functional governance teams (IT, sustainability, and ops) to ensure that 
AI initiatives are tied to global standards (such as ISO 50001 for energy manage-
ment and CSRD for reporting).

Create AI ethics boards to review algorithmic decisions for environmental justice 
and regulatory compliance.

3.2 � Capacity Building for Organizations

(a) Leadership & Culture
Commit executives to sustainability-AI alignment through specific KPIs (e.g., 20% 
energy savings enabled by AI by 2025).

Encourage innovation through pilot projects, hackathons, and internal sustain-
ability AI challenges.

(b) Workforce Upskilling
Increase AI literacy across organizations specifically aligned with sustainability use 
cases, such as training engineers on techniques to optimize neural networks or pro-
curement teams on AI-driven LCA tools.

Collaborate with academic institutions for AI-for-sustainability certifications 
(e.g., MIT’s AI for Climate Change initiative).
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3.3 � Integration & Collaboration Within the Value Chain

(a) Ecosystem Partnerships
Work with suppliers, distributors, and customers to co-design AI solutions. Example: 
A food processor who collaborates with farmers on machine learning yield predic-
tions to reduce excess production and minimize waste.

To engage with government datasets (e.g., regional carbon activity data), public-
private partnerships should be built to generate comprehensive datasets for training 
AI models.

(b) Scalable Pilots
Launch sector-specific pilots to test feasibility.

AI-powered digital twins for energy-efficient production lines.
Logistics: Dynamic route optimization using reinforcement-learning algorithms.
Use pilot results to streamline models and obtain funding for scale-up.

3.4 � Ethical & Economic Safeguards

(a) Ethical AI Design
Conduct fairness audits to ensure that the tools do not disproportionately affect 
vulnerable communities (e.g., automated layoffs in low-income regions).

Implementing stakeholder feedback loops addressing fears of job displacement 
or data privacy.

(b) Cost–Benefit Alignment
Create dynamic ROI models that measure long-range sustainability as an asset (i.e., 
carbon credits and brand value) vs. AI investments over the short (upfront) and 
long term.

Political advocacy for subsidies or green financing mechanisms (e.g., the EU’s 
Sustainable Taxonomy) to encourage SME to take up.

3.5 � Monitoring and Evaluation/Continuous Improvement

(a) Metrics & KPIs
Monitoring progress with AI-augmented sustainability indicators.

Environmental: Carbon intensity per unit produced, water saved through predic-
tive algorithms.

Economic: Return on Investment (ROI) from waste reduction for organizations 
and the cost of AI implementation against long-term savings.

Contextualize reporting across global frameworks (e.g., GRI and TCFD).
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(b) Adaptive Learning
This verifies that AI systems can learn in real time with changes in the environment 
(e.g., climate and policy changes).

AI models and governance policies should be iterated based on feedback loops 
with stakeholders.

Such a framework places AI as a horizontal enabler, a trigger force, and a broader 
sustainable transformation ecosystem. By tending to technological, organizational, 
and ethical issues in parallel, industries are positioned to move from isolated AI 
experiments to systemic change. For instance, if a multinational embeds AI for pre-
dictive maintenance (Pillar 1), the impact can be scaled by training suppliers on the 
same tools (Pillar 3), while tracking emissions reductions against Science-Based 
Targets (Pillar 5). Importantly, the framework’s modular structure enables custom-
ization across sectors, ensuring that different kinds of challenges, such as the decar-
bonization of steel production or responsible mineral sourcing for tech supply 
chains, can easily be addressed.

Success ultimately results from treating sustainability as a shared-value proposi-
tion. This framework presents a pathway for industries to flourish in a resource-
constrained world by harmonizing AI’s computational capacity with human-centric 
governance and planetary boundaries. Figure 1 represents the AI-driven sustainabil-
ity framework.

Fig. 1  AI-driven sustainability framework (Source: Authors’ conception)
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4 � Theoretical, Practical, Social, and Sustainable Implications 
of the Framework

This changes the nature of the AI-based sustainable transformation framework 
raised on that wide-ranging level, where all three sectors go under the fold, creating 
many more nuances at the bottom line within interdependent sectoral behavior. The 
implications of the theoretical, practical, social, and sustainability dimensions are 
discussed below:

4.1 � Theoretical Implications

(a) Advancing Systems Thinking
From this, we built a framework that combines systems theory and operations 
research to model the system interdependencies among industrial processes, supply 
chains, and ecological systems. It treats sustainability as a systemic, interconnected 
problem that challenges reductionist models that separate economic efficiency from 
environmental impact. Such integrated paradigms are consistent with the emergent 
principles of “circular industrial ecosystems” and solidify the nature of AI’s role in 
the modeling of complex adaptive systems.

(b) Bridge the Divide across Disciplines
This framework converges paradigms across the fields of environmental economics, 
machine learning, and organizational behavior, thereby establishing a trans-
disciplinary approach for future exploration. For example, AI-enhanced life-cycle 
assessments (LCAs) are an expansion of traditional methodologies in the field of 
environmental science that integrate many forms of real-time data analytics and 
provide new approaches for the theoretical development of sustainability metrics.

(c) Redefining Value Creation
Eventually, by integrating shared-value theory, the framework assumes that sustain-
ability and profitability are interdependent. This calls into question neoclassical eco-
nomic paradigms that view environmental stewardship as a cost center, instead of 
using AI as a tool to help operationalize the “triple bottom line” (people, planet, profit).

4.2 � Practical Implications

(a) Scalability and Flexibility
The framework is modular and therefore scalable across industries. AI tools are 
optimized for specific tasks and domains; for instance, AI tools for predictive main-
tenance, well suited to automotive manufacturing, can have most of their models 
retrained with little effort in tool life management applied to renewable energy 
infrastructure. Real-world issues such as legacy system integration and data 
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standardization, on the other hand, often require heavy upfront investment and tech-
nical expertise.

(b) Cost-Benefit Trade-Offs
While it can reduce long-term operational costs (energy savings, less waste), upfront 
investments in data infrastructure, workforce training, and ethical audits may cause 
budget problems, especially for SMEs. Real success lies in agile return-on-
investment models that can quantify intangible gains such as brand value and regu-
latory compliance.

(c) Workforce Transformation
The framework requires more fundamental changes to labor relations, moving from 
repetitive jobs to AI-based jobs. For example, Siemens’ AI-powered factories show 
a 40% productivity boost; however, they require engineers to be trained to optimize 
neural networks. This finding highlights the need for sustained upskilling initiatives 
to close the AI literacy gap.

4.3 � Social Implications

(a) Equity and Inclusion
If marginalized communities cannot access upskilling or suffer the most from job 
displacement, AI-powered automation threatens to widen socioeconomic inequal-
ity. The framework’s focus on Ethical AI development and stakeholder feedback 
loops alleviates this moderating effect by focusing on participatory decision-making 
and equitable resource sharing.

(b) Trust and Transparency
Social acceptance is jeopardized by public skepticism about AI’s “black-box” 
decision-making. The framework builds trust in sustainability claims, such as ensur-
ing that a retailer’s carbon-neutral label represents real supply chain changes rather 
than algorithmic greenwashing, by requiring explainable AI (XAI) and third-
party audits.

(c) Community Engagement
Collaborative ecosystems (Walmart’s supplier partnerships) activate local stake-
holders to co-design solutions, while aligning the deployment of AI with commu-
nity needs. However, with the exploitation of IoT-driven supply chains, maintaining 
data privacy is essential and requires strong governance.
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4.4 � Sustainability Implications

(a) Environmental Impact
The AI tools of the framework can be applied directly to planetary boundaries by 
optimizing resource use. Predictive algorithms in construction, for instance, can 
decrease material waste by 15–30%, whereas logistics can reduce fuel emissions by 
up to 25% through route optimization. However, such gains are contingent on the 
switch from renewable energy to a fuel-energy-hungry AI infrastructure.

(b) Circular Economy Acceleration
AI helps build closed-loop systems by allowing real-time tracking of materials and 
emissions. For example, Philips’s AI-powered refurbishment initiative increases 
product lifetime by predicting component failures and automating recycling 
processes.

(c) Toward Regulatory and Policy Convergence
The framework is aligned with international sustainability frameworks (e.g., the EU 
CSRD, Paris Agreement) but emphasizes the need for more harmonized standards 
on such topics. As an example, fragmented carbon accounting rules complicate 
multinational AI deployments, and so you need to value unifying policy advocacy, 
such as ramp-up metrics such as SBTi.

(d) Long-Term Resilience
AI’s predictive power of AI improves climate resilience by simulating disruptions, 
from extreme weather to resource shortages, and facilitating adaptive responses. 
Nestlé used AI to model the impact of drought on coffee supply chains, so it can 
proactively revise sourcing strategies to safeguard farmers’ livelihoods.

Your synthesis: Striking a balance among competing priorities.
The success of the framework depends on navigating tensions between theoreti-

cal ideals and real-world limitations. AI, resulting in hitherto unattainable precision 
of sustainability optimization, comes with its own ethical and social risks that need 
to be constantly governed. Practically, industries must weigh short-term affordabil-
ity against long-term planetary benefits; socially, equitable availability of AI’s 
upside is essential to avoiding a “sustainability divide.”

As such, the framework indicates that AI is not a panacea, but a strategic enabler 
in a larger socio-technological ecosystem. By reconciling innovation with equity, 
efficiency with ecology, and profit with purpose, it paves the way for industrial sys-
tems that flourish within Earth’s finite limits—a vision that is as theoretically com-
pelling as it is practically pressing.
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5 � Conclusion

AI revolutionizes the way industrial and supply chain systems operate, which simul-
taneously marks an important step in mankind’s ongoing struggle to balance eco-
nomic growth with environmental prudence at the same time. This analysis 
demonstrates that AI’s ability to optimize efficiency across resources, model the 
impacts of disruption, and inform circular practices makes it a powerful enabler of 
global sustainability. However, its success depends on a careful interdisciplinary 
approach that extends beyond the deployment of technology to address ethical, 
social, and systemic complexities.

On a theoretical basis, this framework highlights the importance of systems 
thinking, weaving different disciplines such as operations research, environmental 
science, and organizational theory. It challenges siloed approaches and reframes 
value creation in shared prosperity by treating sustainability as an interdependent 
and ever-evolving set of technical and human factors. From a practical perspective, 
the modular framework empowers scalable solutions at a scale, although its imple-
mentation requires intense investment in data architecture, people’s capabilities, 
and alignment across stakeholders. Organizations will introduce trade-offs between 
the upfront costs they incur for AI and the long-term benefits gained for efficiency, 
resilience, and regulatory compliance.

Socially, the framework calls for attention to risks and opportunities. AI-enabled 
automation poses job displacement and ethical dilemmas; however, proactive 
approaches such as inclusive governance, explainable AI, and community-centric 
innovation can help tackle inequalities and foster public trust. Sustainability divi-
dends, whether around emissions reductions or the acceleration of the circular econ-
omy, depend on aligning AI deployments with renewable energy transitions and 
global policy frameworks.

AI is not ultimately a panacea, but a strategic enabler. Where metamorphic power 
exists, it turns data into foresight, prompting industries to sense and adjust to eco-
logical boundaries. However, this potential is not automatic and depends on human 
care. “Governments and civil society, along with the private sector, need to come 
together to create ethical guardrails and equitable access and adaptive learning to 
assert AI as a force for good,” added in its message.

Building on the existing scholarship from both fields, the proposed framework 
aims to provide all sectors and disciplines with a roadmap to weave sustainability 
into the fabric of global business practices at a crucial point in time, as industries 
find themselves at the intersection of technological disruption and climate urgency. 
If we can balance innovation with responsibility, efficiency with equity, and profit 
with planetary health, we can consciously design a future in which AI will comple-
ment every aspect of life—not just by optimizing them but by pervasively reinvent-
ing them—creating a world where vitality in the economy is equal to vibrancy in the 
ecosystem. Transforming with intelligence is not only possible, but also crucial to a 
sustainable future, and this will free up funds and skills for innovation.
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Pixel by Pixel: Constructing Smart Cities 
with AI Building Blocks

Lukas Kopac and Subhankar Das

1 � Introduction

Urbanization has become endemic in the twenty-first century. By 2050, approxi-
mately 70% of the world’s population is expected to live in urban areas, increasing 
the pressure on infrastructure, energy, and public services and intensifying environ-
mental degradation (Borgia et al., 2024). Conventional models of urban planning, 
crafted for an industrial era operating in a crawl, are cracking under the strain of 
modern challenges such as traffic snarl-ups, poorly distributed resources (Das, 
2020), and carbon-heavy sprawl (Das, 2023). Artificial intelligence (AI) stands not 
just as a technological marvel but as an indispensable pillar upon which a whole 
new paradigm is built: the advent of smart cities (Das, Di Virgilio, et al., 2024). 
However, the leap from idealistic reverence to hard truths outliving its ideal is 
marked by disjunction (Das, Mondal, et al., 2024). In the following chapter, a pos-
sible future perspective is introduced: The future urban resilience will be built on a 
conceptual framework that formalizes AI as a scalable, modular technology—a col-
lection of interoperable “building blocks” that can gradually enable cities to realize 
on their path to adaptive, sustainable ecosystems.
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1.1 � The Need to Transform Cities with AI

Urbanization has accelerated so much that legacy systems cannot keep pace. Traffic 
congestion costs economies billions of years through lost productivity, waste man-
agement systems that struggle to keep up with growing populations, and static 
architectural designs that do not account for shifting environmental needs (Di 
Virgilio & Das, 2023a). Although the idea of smart cities has gained momentum, 
most efforts are fragmented and limited to isolated solutions, such as smart trash 
bins with sensors or independent traffic apps (Di Virgilio & Das, 2023b). These 
band-aid approaches commonly lack sync with the overall system, and the results 
are often subpar (Majerova & Das, 2023a). AI, deployed holistically, is an antidote; 
it can synthesize trillions of data points, identify trends, and automate decisions in 
real time (Majerova & Das, 2023b). However, realizing this potential also requires 
shifting focus from pilots toward a unified framework in which technology, gover-
nance, and citizen engagement work in step.

1.2 � Application of Theory: Bridging the Gap

Most of the literature on smart cities is a thin veneer of theory, promising ubiquitous 
connectivity and data-driven governance without practical recommendations 
(Mondal, 2020). Municipalities are still stuck in the mercy of a maze of proprietary 
technologies, competing standards, and budgetary pressures (Mondal, Das, & 
Vrana, 2023). To fill this gap, this chapter presents the AI building block framework 
(ABBF), a scalable phase-driven framework for incremental adoption. Whereas 
top-down overhauls treat smart city development as a monolith, ABBF views it as a 
mosaic of modular components that solve individual urban pain points and, when 
put together, form a cohesive whole. Pragmatically, it focuses on low-risk, high-
reward interventions that can be delivered quickly, promote stakeholders’ buy-in, 
and be iteratively scaled (Mondal et al., 2024).

1.3 � Pillars of AI Building Block Framework

The four foundational pillars of ABBF are the building blocks that represent a nec-
essary layer in smart city evolution.

	(a)	 Data Infrastructure Layer: This foundation for any AI-driven system, where IoT 
sensors, cameras, and citizen-generated data streams are deployed to build a 
truly real-time urban nervous system. For example, Barcelona’s Sentilo plat-
form, which aggregates water meters, parking sensors, and air quality monitors 
on a common dashboard, helps authorities make better decisions.
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	(b)	 Analytical intelligence layer: Raw data become meaningful to machine learn-
ing algorithms across an enterprise that can recognize patterns, forecast disrup-
tions, and optimize workflows (Mondal & Das, 2023a). A project in Singapore 
called Virtual Singapore harnesses the power of digital twins to model transpor-
tation flows and emergency responses, allowing officials to make real-time 
adjustments.

	(c)	 Application Layer: AI insights materialize as solutions at this level: adaptive 
traffic signals reduce congestion by 30%, predictive waste collection routes 
decrease costs by 20%, and energy-efficient building designs leverage climate 
data (Mondal & Das, 2023b).

	(d)	 Governance and Community Layer: Enable governance beyond technology. 
This pillar prioritizes participatory governance digital platforms for citizen 
feedback, public–private partnerships for funding, and ethical guides ensuring 
transparency and equity (Mondal & Das, 2023c). One example is Amsterdam’s 
Tada initiative, which lays out principles of data ownership and inclusion.

1.4 � Groupers and Innovation

What distinguishes the ABBF from existing models is its focus on modularity and 
citizen-centricity. Instead of imposing a one-size-fits-all blueprint, the framework 
allows cities to tailor interventions to their local needs (Mondal et al., 2022). An 
automobile-congested megacity might begin with artificial intelligence-driven 
mobility solutions, whereas a coastal community might concentrate on climate 
resilience (Mondal, Yegen, & Das, 2023). It is important to note that ABBF has 
feedback loops, where the input of a citizen and machine learning continues to 
improve systems (Mondal & Sahoo, 2019). Agile iterative learning allows solutions 
to grow with urban problems.

1.5 � Roadmap for Stakeholders

ABBV provides policymakers with a risk-mitigated roadmap, testing done at the 
district level before scaling citywide. Tech vendors find a more structured market 
for their interoperable tools (Nadanyiova & Das, 2020), while citizens are empow-
ered as co-creators through digital engagement platforms (Tandon & Das, 2023). 
Each layer incorporates ethical considerations: concerns about data privacy and 
algorithmic bias are built in, allowing innovation without sacrificing equity (Vrana 
& Das, 2023a).

In this chapter, we propose that the future of urban living relies on the successful 
deconstruction of smart city development into small manageable building blocks 
driven by AI. The ABBF is not a far-off utopia, but rather a practical toolkit that 
recognizes fiscal constraints, limits to technology, and the bedrock role of human 
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agency (Vrana & Das, 2023b). A compass for navigating complexity, pixel by pixel, 
the framework provides instructions for how to work through differences and uncer-
tainties in parts of the world where, increasingly, livability is in balance as cities 
worldwide contend with post-pandemic recovery and climate urgency (Yegen & 
Das, 2023). The following sections explore each pillar in detail, providing imple-
mentation roadmaps, case studies, and policy recommendations to actualize 
this vision.

2 � Literature Review

Smart cities powered by artificial intelligence (AI) and modular technological sys-
tems have become a new frontier of urbanization. This literature review highlights 
the central determinants of AI-enabled smart city design and development, espe-
cially from the perspective of incremental, “pixel-by-pixel” development. Through 
interdisciplinary literature synthesis, this section identifies the relevant technologi-
cal, governance, social, and system-related issues that have been shown to have the 
greatest impact on the success of such initiatives.

2.1 � Technological Enablers: Building the Data Landscape 
and Integrating AI

Smart city architecture must rest on the application of advanced technologies. 
According to Batty (2013), smart cities are founded based on an “urban informat-
ics” architecture in which Internet of Things (IoT) sensors, big data analytics, and 
artificial intelligence (AI) work together to constitute a nervous system of the city. 
This infrastructure creates opportunities for real-time monitoring and decision-
making with a platform in Barcelona, Sentilo, aggregating data from parking, waste, 
and energy systems (Da Costa et al., 2024). However, the modularity suggested by 
“AI building blocks” requires interoperable systems. Paschen et al. (2019) identify 
scalability issues in siloed data architectures and encourage the use of open stan-
dards for cross-domain communication (e.g., traffic management, energy grids).

AI’s role is to allow data processing to be predictive and prescriptive and use 
digital twins to simulate scenarios, optimize traffic flow, and disaster response 
(Melendez, 2021, for example, Singapore’s Virtual Singapore). As found in 
Copenhagen’s district heating systems, “machine learning algorithms adapted to the 
weather/occupancy reduce energy consumption by 25% (Saloux & Candanedo, 
2018).” These case studies highlight the need for a strong data infrastructure + scal-
able AI model as two of the primary building blocks.
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2.2 � Governance Models: Frameworks for Collaboration 
and Inclusion

Sound governance systems are essential for realizing the technological potential. 
According to Vainio and Sankala (2022), smart cities need to move away from the 
traditional top-down bureaucratic governance model to networked governance, 
including public–private partnerships (PPP) and citizen engagement. Amsterdam’s 
Tada initiative is a case in point: it sets ethical guidelines for data use and creates 
trust by being transparent. By contrast, fragmented regulatory landscapes are com-
mon in cities dependent on proprietary solutions, which tend to cause inefficiencies. 
Anthopoulos (2017) recognized the importance of coordinated policy efforts cen-
tered on interoperability and long-term sustainable development. Funding mecha-
nisms also assume critical functions. Although PPPs offer relief to fiscal constraints, 
overreliance on the risks posed by corporate actors tends to place profits before 
public goods (Liu et al., 2023). Thus, governance models should walk a tightrope 
between innovation and accountability and enable fair resource distribution.

2.3 � Social Dimension Integration

The pixel-by-pixel metaphor implies a granular, community-focused development. 
Martin et al. (2018) emphasize that smart city initiatives are often problematic when 
they ignore citizen agency. Participatory platforms such as Medellín’s MiMedellín, 
which crowdsources ideas for urban improvements, illustrate how inclusive design 
can increase project relevance and adoption (Dajer, 2023). However, this remains a 
digital barrier. Kitchin et al. (2019) note that marginalized communities might have 
been excluded from AI-powered systems because of uneven access to technology or 
data literacy, which amplifies socio-spatial inequalities. The ethical implications 
add a further layer of complications to AI implementation. For instance, algorithmic 
bias in predictive policing and resource allocation (Almasoud & Idowu, 2024) high-
lights the importance of equity audits and representative training datasets. In the 
ABBF, the governance layer should also include mechanisms for transparency and 
redress to curb such risks.

2.4 � Structural Issues: Scalability and Sustainability

A criticism often leveled at smart city projects is their inclination toward pilot-scale 
solutions that are not scalable. Yigitcanlar et al. (2018) attribute this to short-term 
funding cycles and an emphasis on “showcase” districts. Sustainability (both envi-
ronmental and operational) is a key consideration. Meanwhile, as gene editing 
empowers faster, more efficient crops (e.g., anti-allergy cows using CRISPR can 

Pixel by Pixel: Constructing Smart Cities with AI Building Blocks



182

yield 3% more meat, use 20% less land), water usage, and e-waste potential from 
IoT devices driving AI suffocate our physical ecosystem. For example, Velenturf 
and Purnell (2021) advocated for the principles of the circular economy in deploy-
ing technology, ensuring that the underlying deployment of AI systems has broader 
climate ambitions.

2.5 � Synthesis: Modularity to Bridge Gaps

The literature exposes a gap between the wider vision of smart cities and their real-
ization. Theoretical models focus on ubiquity but face practical challenges such as 
technological silos, governance misalignment, and social inequities. The ABBF 
addresses these gaps and proposes modularity as the connecting bridge. By creating 
smart city development as a series of interoperable layers (data, analytics, applica-
tions, and governance), cities can take low-risk and high-impact actions without 
sacrificing their systemic coherence.

Critics have warned that modular systems are at risk of fragmentation in the 
absence of strong integration standards. However, as the case studies of Barcelona 
and Singapore show, incremental, layered development, and adaptive governance 
can produce scalable results.

The force that has the greatest impact on the construction of AI-driven smart 
cities is

	(a)	 Interoperable tech infrastructure for smooth data flow and AI integration
	(b)	 Collaborative governance models strike a careful balance between innovation 

and equity.
	(c)	 Design with the citizen at the center and catering to the digital divide.
	(d)	 Scalable, sustainable frameworks that promote incremental growth and eco-

logical resilience.

These aspects highlight the feasibility of the pixel-by-pixel paradigm in which 
cities develop adaptively to their modular AI building blocks. Focus and Action 
Links: However, significant gaps exist surrounding the use and application of ethi-
cal AI and the sustainable integration of such systems into existing workflows. The 
following sections of this chapter will expand this foundation to describe the path-
ways for implementing ABBF.
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3 � Detailed Framework for Constructing Smart Cities 
with AI Building Blocks

Building on the factors identified in the literature review, this framework proposes a 
structured, modular approach to smart city development: the AI Building Blocks 
Framework (ABBF). Designed for incremental, citizen-centric implementation, the 
ABBF is organized into four interconnected layers, each addressing technological, 
governance, social, and systemic challenges. Below is a detailed breakdown of the 
framework, its components, and the actionable steps for stakeholders. Figure  1 
represents AI building blocks for smart cities.

3.1 � Data Infrastructure Layer: Building the Urban 
Nervous System

Objective: To establish a robust, interoperable data ecosystem that enables real-time 
monitoring and decision-making.

Components:

	(a)	 IoT Integration: Deploy networked sensors (e.g., traffic cameras, air quality 
monitors, and smart meters) to collect real-time data across urban systems. 
Example: Barcelona’s Sentilo platform unifies the data from 12,000 sensors.

	(b)	 Open Data Standards: Non-proprietary protocols (e.g., FIWARE and OneM2M) 
to ensure cross-system compatibility.

	(c)	 Cloud-edge computing uses edge devices for local data processing (reducing 
latency) and cloud platforms for centralized analytics.

Fig. 1  AI building blocks for smart cities (Source: Authors’ conception)

Pixel by Pixel: Constructing Smart Cities with AI Building Blocks



184

Implementation Steps:

	(a)	 Conduct a citywide audit to identify critical data gaps (e.g., traffic hotspots and 
energy leaks).

	(b)	 Partners with tech providers to install modular upgradable IoT devices.
	(c)	 Create a municipal data governance policy that manages open standards and 

data-sharing agreements.

3.2 � Analytical Intelligence Layer: From Data to Insights

Objective: To Leverage AI to transform raw data into actionable insights.

Components:

	(a)	 Predictive Analytics: Machine learning models to forecast traffic, energy 
demand, and environmental risks. Example: Singapore’s digital twin predicts 
flood impact.

	(b)	 Prescriptive AI: Algorithms that recommend optimized actions (e.g., adaptive 
traffic light timings and waste collection routes).

	(c)	 Digital Twins: Virtual replicas of urban systems to simulate scenarios and test 
interventions.

Implementation Steps:

	(a)	 Develop a city-specific AI training dataset that is anonymized to protect its 
privacy.

	(b)	 Pilot predictive tools in high-impact areas (e.g., traffic management in con-
gested districts).

	(c)	 Establish a municipal AI ethics board to audit models for bias and fairness.

3.3 � Application Layer: Delivering Tangible Solutions

Objective: To Translate AI insights into scalable user-centric applications.

Components:

	(a)	 Smart Mobility: AI-powered traffic management (e.g., dynamic toll pricing and 
autonomous shuttle routes).

	(b)	 Resource Optimization: Predictive maintenance for utilities (e.g., Seoul’s AI for 
detecting water leaks).

	(c)	 Climate Resilience: AI-driven flood prediction systems deployed in Da Nang, 
Vietnam.
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Implementation Steps:

	(a)	 Prioritize applications based on local needs (e.g., air quality in polluted cities).
	(b)	 Launch pilot projects with measurable KPIs (e.g., a 20% reduction in commut-

ing times).
	(c)	 Integrate citizen feedback via apps (e.g., reporting potholes or faulty sensors) to 

refine the solutions.

3.4 � Governance & Community Layer: Ensuring Equity 
and Sustainability

Objective: Foster inclusive governance and long-term system resilience.

Components:

	(a)	 Participatory Platforms: Digital tools such as Medellín’s MiMedellín for crowd-
sourcing ideas.

	(b)	 Public–Private Partnerships (PPPs): Secure funding while ensuring account-
ability (e.g., Amsterdam’s Tada covenant).

	(c)	 Equity Audits: Regular assessments to ensure that AI tools do not marginalize 
vulnerable groups.

Implementation Steps:

	(a)	 Form a multi-stakeholder taskforce (government, NGOs, tech firms, and citi-
zens) to co-design policies.

	(b)	 Allocate subsidies for digital literacy programs to bridge the technology gap.
	(c)	 Embed circular economy principles (e.g., recycling e-waste from IoT devices) 

into procurement policies.

3.5 � Phased Implementation Roadmap

To mitigate risks and ensure scalability, ABBF follows three phases:

	1.	 Pilot Phase (years 1–2)

	 (a)	 Focus on a single district or sector (e.g., smart lighting in a commercial zone).
	 (b)	 Measure success via cost savings, citizen satisfaction, and environmental 

impacts.

	2.	 Scale-Up Phase (years 3–5)

	 (a)	 Expand validated solutions citywide (e.g., AI traffic systems across all major 
corridors).

	 (b)	 Establishment of cross-departmental data-sharing protocols.
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	3.	 Sustainability Phase (years 6–10)

	 (a)	 Institutionalize AI governance via legislation (e.g., mandatory equity audits).
	 (b)	 Transition to renewable energy for data centers and IoT networks.

Overcoming Challenges

	(a)	 Data Privacy: Implement GDPR-like regulations and anonymization techniques.
	(b)	 Funding: Blended finance models (e.g., green bonds and impact investing).
	(c)	 Resistance to Change: Run awareness campaigns showcasing pilot success 

(e.g., Copenhagen’s energy savings).

The ABBF provides a pragmatic and modular pathway for cities to harness AI’s 
potential of AI while addressing governance, equity, and sustainability. By decom-
posing smart city development into interoperable layers, cities can adopt low-risk 
interventions, demonstrate quick wins, and scale success systematically. This frame-
work does not prescribe a universal blueprint, but empowers cities to tailor solutions 
to their unique challenges, ensuring that AI serves as a tool for inclusive, adaptive 
urban evolution. Figure 2 represents the AI-driven approach for urban evolution.

4 � AI Building Blocks Framework (ABBF) Implications

A paradigm shift in urban development, the AI building blocks framework (ABBF), 
calls for artificial intelligence (AI) as an integrated catalyst for adaptations toward 
equitable, sustainable cities (Das et al., 2023). However, the consequences of 

Fig. 2  AI-driven urban evolution (Source: Authors’ conception)
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implementing it are complex, spanning theoretical, practical, social, and sustain-
ability considerations. In this section, we critically review these dimensions, empha-
sizing the prospects, challenges, and paths toward holistic-oriented transformation 
of cities.

4.1 � Theoretical Implications: Reassessing Smart 
City Paradigms

The ABBF throws cold water on the global popular and theoretical imagination 
around smart cities that has gone primarily toward technological utopianism rather 
than slower context-specific problem solving.

	(a)	 Modularity Above Monoliths: Conventional models such as Batty’s (2013) 
urban informatics highlight ubiquitous connectivity without implementation 
barriers. Modularity becomes a theoretical lens in the ABBF—similar in pur-
pose, yet structurally different, to the “corporate smart cities”—and would 
(theoretically) decentralize control, allowing cities to adopt tailored solutions. 
This transition reframes smart cities as dynamic ecosystems, instead of end 
destinations.

	(b)	 Interoperability as a Core Principle: Similar to Kitchin (2014), this framework 
recommends that open data ecosystems based on interoperability, not proprie-
tary systems, should ground urban AI. This challenges the supremacy of tech-
nology behemoths in smart city markets and provides a theory of democratized 
innovation.

	(c)	 Citizen-Centric Systems: The ABBF bridges the gap between Bussu et  al. 
(2022) and city theory and technocratic planning. It frames citizens not as pas-
sive recipients, but as co-deciders, progressing theories of inclusive urbanism.

Shortcomings and Prospects: Although ABBF mitigates the fragmentation across 
existing models, it simultaneously exposes theoretical gaps related to seamless inte-
gration of long-horizon systems. Are modular systems capable of retaining coher-
ence on a word-scale? Research on the feedback loops between AI layers with 
respect to urban resilience actions is also needed.

4.2 � Practical Implications: Implementing What We Learn

ABBF’s modular, stepwise, building-block approach provides concrete paths but 
requires that we pragmatically navigate the technical, financial, and institutional 
challenges.

	(a)	 Cost and Scalability: The deployment of IoT infrastructure and AI tools requires 
a considerable initial investment. Cities such as Da Nang, Vietnam, avoided this 
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through PPPs and phased pilots, but smaller municipalities might have no deal 
negotiating muscle against tech firms. The framework’s focus on open stan-
dards may lead to less vendor lock-in and lower long-term costs.

	(b)	 Technological Adaptation: Existing systems are often not conducive to being 
fed into AI systems. For instance, retrofitting century-old water pipes with sen-
sors (as in Seoul) requires an interdisciplinary team of engineers, data scien-
tists, and urban planners. The ABBF modularity enables gradual upgrades 
without major changes.

	(c)	 Governance Coordination: Individual municipal departments—transportation, 
energy, and waste—act in silos, thus limiting data sharing. Barcelona’s success 
with Sentilo depended on having a central data office, a model that the ABBF 
could institutionalize. However, bureaucratic inertia and reluctance to be trans-
parent remain as obstacles.

	(d)	 Risk Mitigation: At core, this framework’s pilot-phase focus allows cities to test 
solutions on a small scale, building political and public support through tangi-
ble wins (e.g., traffic fatalities). However, the management of Pilot Projects can 
lead to “island solutions” if they are not accompanied by a citywide interoper-
ability protocol.

4.3 � Scientific Advances: Philosophy, Societal Development, 
and Ethics

The social impact of ABBF relies on finding a balance between technological effi-
ciency and human-centric value.

	(a)	 Digital division and marginalization: Although AI-led services (e.g., smart 
buses) enhance mobility for tech-savvy populations, digitization can marginal-
ize disadvantaged groups such as low-income residents or the elderly. The 
MiMedellín platform emphasizes how offline engagement (e.g., community 
workshops) needs to be coupled with digital tools.

	(b)	 Algorithmic Bias—predictive policing or AI-allocated resources—can risk 
entrenching systemic bias. While an equity audit layer governs ABBF, cities 
must also invest in diverse training datasets and build inclusive AI design teams 
to prevent harm before it occurs.

	(c)	 Erosion of Privacy: Pervasive sensors and data collection raise concerns regard-
ing surveillance. As suggested here, GDPR-like regulations are essential, but 
their enforcement is uneven worldwide. For example, initiatives such as 
Amsterdam’s Tada show that ethical guidelines go far away when they are 
backed up by legal teeth.

	(d)	 Empowerment vs. Control: ABBF’s participatory platforms empower citizens 
to shape urban policies and foster trust; without safeguards, these tools could 
lose their meaning. Transparent grievance redress mechanisms and oversight 
led by the affected community members are essential for ensuring accountability.
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4.4 � Sustainable Implications: Social, Environmental, 
and Long-Term Viability

The ABBF identifies sustainability as a cross-cutting goal but has both environmen-
tal and economic impacts.

Environmental Gains:

	(a)	 Energy Efficiency: AI-optimized grids (e.g., Copenhagen district heating)—
carbon footprint reduction. However, without renewable energy powering data 
centers and IoT networks, energy demands can outweigh the gains.

	(b)	 Waste Reduction: Infrastructure maintenance, such as Seoul’s predictive water 
leak detection, lengthens asset lifespans, a circular economy principle.

	(c)	 E-Waste Issues: Hazardous e-waste from fast IoT device turnover. The circular 
procurement policies of the ABBF—those requiring recyclable sensors—could 
alleviate this, but implementation will mean reforming a global supply chain.

	(d)	 Climate Resilience: AI-based tools for flood prediction create better adaptive 
capacities. However, overreliance on predictive models makes tackling root 
causes such as unsustainable land use difficult.

4.5 � Economic Sustainability

	(a)	 Cost Savings versus Job Displacement: AI saves costs from an operational per-
spective (automated waste collection) but displaces low-skilled jobs. Reskilling 
Programs: The ABBF’s governance layer should prioritize reskilling programs 
similar to Singapore’s smart-nation workforce initiatives.

	(b)	 Funding Models: Projects can be sustained through blended financing (e.g., 
green bonds), although cities need to ensure that they avoid debt traps. Linked 
to defined emissions targets, Rotterdam’s climate bonds create a replicable 
template.

These implications of ABBF suggest tension between efficiency and equity, 
innovation and inclusivity, and growth and sustainability. Its modular design enables 
cities to make such compromises. For example, a city that focuses on climate resil-
ience may prioritize fast-tracking artificial intelligence flood models and implement 
surveillance-heavy systems. On the other end of the spectrum, a socially fragmented 
city might prioritize participatory platforms and scale the infrastructure of AI.
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4.6 � Critical Unresolved Issues

Global Inequity: The Global North creates AI solutions, but the Global South cities 
do not have the funds and technical capacity to deploy ABBF. Thus, international 
knowledge-sharing frameworks are important.

Ethical Universalism: Ethical tenets of the framework (e.g., data privacy) should 
be adjusted alongside cultural norms. India even pursues a Digital India initiative 
that juxtaposes AI innovation with the local enactment of data sovereignty laws.

Sustainable Resilience: AI systems trained on current data also tend not to react 
to future shocks (e.g., pandemics and migration crises). We require mechanisms for 
continuous and adaptive governance.

This is the framework for ABBF that redefines smart cities as humane, resilient, 
and dynamic. Theoretically, it pushes modular urbanism forward; practically, it pro-
vides a pathway of piecemeal delivery; socially, it elevates equity; and environmen-
tally, it marries efficiency with planetary custodianship. However, its effectiveness 
depends on resolving internal contradictions, ensuring that AI is a means of group 
benefit, not a force for inequality. As such, policymakers need to treat the frame-
work not as a blueprint, but as a living process that grows and transforms alongside 
technology, society, and the environment. With cities around the world confronting 
the existential crisis of urbanization, the ABBF offers a north star, not an endpoint, 
for understanding the fraught balance between progress and duty.

5 � Conclusion

Using the AI Building Blocks Framework (ABBF), we established a paradigm that 
is poised to revolutionize urban transformation, centering on the integration of 
auditable, autonomous, transparent, and accountable AI-centric infrastructure into 
the construction of vibrant cities. By breaking down smart city initiatives into mod-
ular, interoperable layers (data infrastructure, analytical intelligence, applications, 
and governance), the framework provides cities with a practical roadmap for har-
nessing AI’s potential while mitigating risks. If there is a refrain in this chapter, it 
has been that the future of urban resilience does not depend on singular technologi-
cal leaps, but rather on incremental, citizen-centric, systemic, and constructive 
interventions. With urban centers all over the world grappling with the simultaneous 
pressures of growth and sustainability, ABBF is a combination compass and toolbox 
for stakeholders trying to navigate complexity, but at the same time, sparking local-
ized innovation.
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5.1 � Main Contributions

	(a)	 Modularity: Enabling Scalability: The ABBF provides a framework for cities to 
adopt context-based solutions (e.g., Amsterdam’s AI traffic management sys-
tem or Da Nang’s flooding prediction system) while augmenting rather than 
replacing the underlying models. This modularity minimizes the implementa-
tion risk and promotes stakeholder buy-in with visible and rapid success.

	(b)	 Citizen-centric Governance: By embedding participatory platforms and equity 
audits into its blueprint, the framework should counter the technocratic bias that 
characterizes conventional smart city wrap-ups. Initiatives such as Medellín’s 
MiMedellín highlight the importance of inclusive engagement: when people 
identify their solutions, the solutions will meet their needs.

	(c)	 Sustainability as a Cross-Cutting Imperative—The ABBF brings together cir-
cular economy principles, renewable energy transitions, and climate resilience 
tools into the interstitial space between AI maneuvers and recognizes the envi-
ronmental trade-offs entangled in AI deployment.

5.2 � Future Scope

ABBF is a dynamic foundation for future innovation and not a static blueprint. Each 
novel direction offers the opportunity to evolve and enhance its scope of use.

Next-Generation Technologies

	(a)	 Generative AI: Real-time simulations of entire cities powered by urban digital 
twins—facilitators of predictive governance. For example, generative models 
can design neighborhoods that are resilient to climate change or dynamically 
optimize public transit routes.

	(b)	 5G and Edge Computing: Reduced latencies will lead to improved decision-
making, especially during emergencies (e.g., AI orchestrating disaster responses 
through decentralized edge devices).

	(c)	 Transparency Through Blockchain: Distributed ledger technologies can decen-
tralize data ownership (citizens can control their data) and increase the audit-
ability of municipal contracts.

5.3 � Integration with Global Agendas

	(a)	 Climate Action: Connecting the ABBF to international agreements, including 
the UN Sustainable Development Goals (SDGs) and the Paris Agreement, 
could help local AI efforts to support and obtain goals of global carbon 
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neutrality. For example, AI-optimized power grids directly contribute to SDG 7 
(Affordable and Clean Energy).

	(b)	 Global South Empowerment: Deploying the ABBF in resource-constrained 
contexts, for example, through low-cost IoT sensors in informal settlements, 
can democratize smart city benefits. This potential is evident in collaborative 
platforms, such as the Smart Cities Mission.

5.4 � Normalization of Ethical and Regulatory Frameworks

	(a)	 AI Governance Frameworks: With a maturity of AI ethics, cities could start 
adopting standardized certifications for fairness and transparency (similar to 
LEED certifications for sustainability).

	(b)	 Cross-border data policies: Minimizing the differences between data sover-
eignty laws (to a degree: GDR EU: harmonization with ASEAN data gover-
nance models) critical for multinational deployment of smart cities

5.5 � Limitations

As much promise as ABBF holds, inherent relationships and potential downsides 
must be recognized and proactively managed.

Technological and Financing Barriers

	(a)	 Infrastructure Dependency: The framework is predicated on baseline digital 
connectivity, excluding cities that are not already connected to electricity or the 
internet. In places such as sub-Saharan Africa, hybrid analog-to-digital solu-
tions may be required.

	(b)	 Funding Gaps: Despite the availability of financing pathways such as PPPs and 
green bonds, many smaller cities are unable to attract investors due to the 
absence of creditworthiness or technical knowledge.

Social and Ethical Risks

	(a)	 Algorithmic Bias: One way equity audits cannot help: AI models trained on 
historical data can reinforce imbalances. For example, the use of predictive 
policing tools in the USA has found itself disproportionately targeting minority 
communities, which is a risk that ABBF must work to mitigate at all times.

	(b)	 Privacy trade-offs: Balancing data utility with anonymity is also a contentious 
field. Cities such as Singapore are criticized for using surveillance data under 
the pretext of “smart governance.”
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Scalability Challenges

	(a)	 Interoperability Gaps: If cities choose incompatible standards, modular systems 
run the risk of fragmentation. Barcelona’s Sentilo worked well, in part thanks to 
a municipal mandate to open-source protocols—not something every city 
can afford.

	(b)	 Institutional Inertia: Bureaucratic reluctance to share data or engage in partici-
patory governance can slow implementation, such as in legacy-fueled adminis-
trations that shelved early smart city efforts in Tokyo.

Adjacent and Adaptive Urbanism
The best test of the ABBF is its adaptability. Cities must adopt a mindset of iterative 
learning and plan each intervention as a prototype that can be improved through 
feedback loops. Policymakers, technologists, and citizens have to work together.

	(a)	 Center Equity: Design AI tools with marginalized communities, not merely 
about them.

	(b)	 Invest in Capacity Building: Build capabilities for digital literacy and reskill the 
workforce displaced by automation.

	(c)	 Cultivate Global Solidarity: Set up reciprocity networks in which the smart cit-
ies share their learning of climate resilience, for example, affordable IoT 
solutions.

We are not on a sprint for AI-powered smart cities but instead a marathon that 
requires patience, inclusivity, and ethical considerations. The ABBF is a rudimen-
tary road end; however, it is only as good as what we make, for technology will 
never rely on an urban problem solvable. Cities are products of human ingenuity, 
and their development must be centered on human dignity. As AI transforms sky-
lines and infrastructure, it has the potential to deepen shared commitment to equity, 
sustainability, and shared prosperity. The pixels of progress are in our palms, and 
how we piece them together will determine if the cities of the future are smart, not 
just in computation, but in conscience.
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From Data Lakes to Carbon Sinks: AI’s 
Hydrological Approach to Emissions

Lê Nguyên Bảo, Subhankar Das, and Subhra R. Mondal

1 � Introduction

The climate crisis calls for radical rethinking of the carbon management system 
societies have put in place. As the world hurtles toward net-zero targets (Borgia 
et al., 2024), the convergence of technology (Das, 2020), ecology, and economics 
has become key to unlocking success (Das, 2023). In this chapter, we introduce a 
new analogy: (water) systems, to understand how artificial intelligence (AI) can 
change the way carbon is managed. In the same way that hydrological cycles govern 
water flow, storage, and purification (Das et al., 2024), AI can organize the transfer 
of carbon from emission sources to natural and engineered sinks, forming a dynamic 
equilibrium (Das et al., 2024). By recasting data as a lifeblood resource, such as 
water, we examined how AI-enhanced carbon accounting, emissions trading, and 
offset project innovations can direct humanity’s digital wizardry toward ecological 
stewardship.
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1.1 � Hydrological Metaphor: Fluidity in Carbon Management

The water systems run on a balance. Rivers deliver nutrients,   lakes hold resources, 
and wetlands contain clean impurities (Das et al., 2023). Similarly, the carbon cycle 
is based on flows—emissions from industries, absorption by forests and oceans, and 
regulatory mechanisms to guard against overflow (Di Virgilio & Das, 2023a). As the 
metaphor expands toward data ecosystems, data lakes—large stores of raw data—
parallel the potential of carbon sinks and natural reservoirs that store atmospheric 
CO₂ (Di Virgilio & Das, 2023b). AI is a hydrological engineer of this system, divert-
ing streams of data to map, measure, and halt emissions (Majerova & Das, 2023a). 
By treating carbon as a manageable resource rather than a waste product, this 
approach aligns economic incentives and planetary boundaries (Majerova & 
Das, 2023b).

1.2 � Carbon Accounting: A Road Through the Watershed

GOOD water management begins with an understanding of the contours of a water-
shed (S. Mondal, 2020). Carbon accounting, the measurement of emissions up and 
down supply chains, plays a similar role. Traditional methods are also prone to 
fragmentation and latency and fail to capture real-time data (S. Mondal et al., 2023, 
2023). AI transforms this into a dynamic process by combining satellite imagery, 
IOT sensors, and machine learning to build dynamic emissions inventories 
(S. Mondal et al., 2024). For example, Green Horizon Project employs AI to fore-
cast pollution patterns, while startups such as Watersheds provide granular tracking 
for corporations. These tools operate in the same way as hydrological models, mod-
eling emissions “flows” to detect where leakage may occur and allow for early 
intervention (S. R. Mondal & Das, 2023a).

1.3 � Emissions Trading: Riding the Waves of Market Forces

In drier areas, trading in water rights preserves precious resources. Emissions trad-
ing systems (ETS), including the European Union’s cap-and-trade program, use a 
similar reasoning when it comes to carbon. AI adds value to these markets by pre-
dicting price changes, identifying fraud, and streamlining transactions (S. R. Mondal 
& Das, 2023b). Machine learning algorithms also comb through historical data, as 
well as geopolitical trends, to provide recommendations on which permits to pur-
chase, and that also resembles predicting when it will rain (S. R. Mondal & Das, 
2023c). AI platforms, such as ClimeWorks’ Carbfix project, for instance, use mar-
ket simulations to guarantee liquidity and fairness. Carbon allowances can be 
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exchanged for carbon credits; hence, carbon is treated as a commodity, allowing 
adaptive systems through which markets can reward sustainable practices.

1.4 � Environmental Climate Change

Just as irrigation channels water to productive fields, AI helps to pinpoint top-level 
locations for carbon offset projects. Nature-based solutions, such as reforestation 
and soil carbon enhancement, need to be precise to maximize carbon capture 
(S. R. Mondal et al., 2022). Google’s AI-enabled Global Fishing Watch tracks real-
time deforestation,   while Microsoft’s AI for Earth program uses ecological data to 
target areas for reforestation (S. R. Mondal et al., 2023, 2023). AI does not merely 
restore; it designs engineered sinks—direct air capture facilities—for instance, 
through viability-of-simulation for geological storage (S. Mondal & Sahoo, 2019). 
Validated by blockchain-driven transparency, these projects transform offsets from 
symbolic actions into strategic   investments (Nadanyiova & Das, 2020).

1.5 � Confluence Track for Resilient Net-Zero Ecosystem

The hydrological metaphor points to a fundamental truth: carbon management is a 
systemic problem (Tandon & Das, 2023). AI works best when it connects environ-
mental science to economics, creating feedback loops drawn from data and action 
(Vrana & Das, 2023a). International carbon markets (Vrana & Das, 2023b), corpo-
rate pledges, and policies such as the Paris Agreement are smart responses (Yegen 
& Das, 2023).

As this chapter will demonstrate, the journey from data lakes to carbon sinks is 
as philosophical as technological. It asks us to understand carbon as a resource to be 
carefully circulated, stored, and purified—a testament to our species’ ability to rec-
oncile innovation with the rhythms of Earth.

2 � Literature Review

The crossroads of artificial intelligence  (AI), environmental science, and econom-
ics have prompted new strategies to achieve net-zero carbon economies. This review 
synthesizes the literature on the hydrological systems of the role of AI in carbon 
management, focusing on three pillars: carbon accounting, emissions trading, and 
AI-driven offset projects.

An extrapolated analogy regarding water systems, as a means of better under-
standing complex environmental processes of this nature, is developed utilizing 
foundations set within resilience theory and socio-ecological systems research. 
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Folke et al. (2016) emphasize that natural systems  such as watersheds operate on 
adaptive cycles of resource flow and storage, the principles of which can apply to 
carbon management. Primarily based on this, Steffen et  al. argue that planetary 
boundaries, for example, the carbon cycle, need dynamic balance like hydrological 
balance (2015). As for more recent metaphors, they have translated the metaphor to 
digital systems: “data lakes” (Hai et al., 2023), akin to natural reservoirs, storing 
information, waiting to be tapped for strategic use. AI can act as a “hydrological 
engineer” for carbon, Luo et al. (2025), to match flows of emissions data to the most 
effective forms of sequestration. Framing the focus in this way draws on arguments 
supported by cross-domain analysis that connects ecological realities with compu-
tational capabilities to produce a coherent set of constraints for systemic carbon 
governance.

2.1 � Carbon Accounts, from Static Inventories to Fluid 
Data Ecosystems

Traditional carbon accounting methods, still dominated by frameworks such as the 
Greenhouse Gas Protocol, have been critiqued as fundamentally inflexible and as 
based on backward-looking metrics (Ascui & Lovell, 2011). AI-driven methodolo-
gies help bridge these gaps using real-time data streams. Rolnick et al. (2019) dem-
onstrated how satellite imagery and IoT sensor tracking systems, such as the Climate 
TRACE project, have been enhanced through machine learning (ML) for better 
emission tracing. For example, Hang and Chen (2022) found that AI reduces uncer-
tainty concerning supply chain emissions by 30–50%, similar to hydrological mod-
els that predict watershed behavior. Corporate case studies illustrate the transition 
from static reporting to adaptive granular carbon mapping, such as in Microsoft’s 
AI-powered sustainability dashboard. These advances mesh neatly with 
Linnenluecke et al. (2015)'s call for an “adaptive accounting” in climate economics, 
in which the fluidity of data allows for proactive mitigation.

2.2 � AI as a Market Catalyst for Emissions Trading 
Systems (ETS)

Emissions trading, based on cap-and-trade systems such as the EU ETS, struggles 
with issues of price volatility and market manipulation. AI predictive analytics is an 
answer to this. Bojer (2022) proposes that ML algorithms allow us to better take 
into account historical trends and shocks in geopolitics in forecasting permit prices, 
similar to hydrological models conducting analysis predicting droughts. AI is used 
by platforms such as Pachama to verify carbon credits (Kobayashi-Solomon, 2020). 
Additionally, algorithmic trading is an adaptation of financial markets that improves 

L. N. Bảo et al.



201

liquidity in carbon markets. One example of this is the Carbfix project from 
ClimeWorks, where we are using AI to simulate markets to optimize the allocation 
of permits, which would not only be economically viable but would also reconcile 
our economic instantiations with the limits that our ecosystems place upon them.

2.3 � Machine Learning Carbon Offsets

Nature-based carbon offsets, such as reforestation, often face problems with incon-
sistent monitoring (Buma et al., 2024). AI adds precision through tools such as the 
Global Forest Watch, which employs ML to detect deforestation in real time. Bastin 
et al. (2019) estimated that 205 gigatons of CO₂ could be sequestered by AI-optimized 
afforestation, whereas Google focused on identifying high-impact restoration zones. 
AI also helps with engineered solutions, such as direct air capture (DAC). According 
to research from 2018, Direct Air Capture (DAC) efficiency is enhanced by machine 
learning models that simulate the feasibility of geological carbon storage. 
Blockchain-AI hybrids, such as IBM’s Carbon Asset Blockchain, offer heightened 
transparency to alleviate concerns over offsets’ credibility (Seabra et  al., 2024). 
These innovations are a move away from symbolic offsets toward data-driven, scal-
able solutions.

2.4 � Synaptic Relation between Environmental Science 
and Economics

The hydrological metaphor also illustrates the need for interdisciplinary   cross-
pollination. Fremstad et al. (2019) analogy of our economic climate as a “climate 
casino” points to the risks of unmanaged flows of carbon, whereas Treasury (2021) 
emphasizes the need to value natural capital. Agrawal et al. (2018) posit that predic-
tive algorithms internalize environmental externalities, allowing carbon to shift 
from liability to tradable assets. Case studies such as those of Maersk’s AI-tuned 
shipping routes demonstrate how corporate sustainability works hand-in-hand with 
cost savings. Harmonized real-time data can stabilize robust carbon markets, sup-
porting the viability of Article 6 of the Paris Agreement (Minas, 2022).

�Synthesis and Gaps

The AI use cases for carbon management revealed in the existing literature demon-
strate the potential of AI to assist in carbon management, but the studies tend to treat 
the technical, ecological, or economic aspects in isolation. Although a hydrological 
metaphor can provide a cohesive framework, its implementation has been largely 
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overlooked. This chapter helps by weaving together these strands, showing how AI 
can mimic the ability of water systems to inspire the design of a net-zero future.

3 � A Practically Implementable Framework for AI’s 
Hydrological Blueprint and Net-Zero Emissions

This framework uses the metaphor of water systems to work by outlining a circular 
five-phase approach to carbon management that incorporates AI, environmental sci-
ence, and market mechanisms. Rooted in the concepts of fluidity, storage, and adap-
tive governance, it lays out a clear set of actions by governments, corporations, and 
NGOs to decrease emissions and improve sequestration.

3.1 � Phase 1: Integrating the Data and Mapping the Hydrology

Goal: Create a real-time unified carbon data ecosystem.

�Wireless Sensor Networks and Remote Satellite Systems

Deploy IoT sensors across industrial plants, transport networks, and farming areas 
to measure emissions (e.g., methane leaks and fuel burning). This is coupled with 
satellite networks, such as ESA’s Copernicus or NASA’s Orbiting Carbon 
Observatory-3, to capture deforestation and land-use changes.

�Analytic Workload Approach: Centralized Data Lake Architecture

Build a cloud-based “carbon data lake” to collate/shovel both structured (corporate 
GHG filings, natural capital reports) and unstructured (satellite imagery, social 
media heat maps of deforestation) data. AI tools such as convolutional neural net-
works (CNNs) are used to classify emission sources and natural sinks (Rolnick 
et al., 2019).

�Dynamic Carbon Accounting

Field 1: AI-based calculation of Scope 1–3 emissions from activity-based and 
spend-based methods within auto-generated dashboards (e.g., Microsoft’s Planetary 
Computer). Blockchain on audit trails and compliance with the Greenhouse Gas 
protocol.
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�Implementation Example

A global company overlaid satellite deforestation data by using IoT sensors from its 
factories. AI model—top, which reports an overestimation of carbon offsets by 20% 
because of degraded forests, triggering reinvestment in the verified project.

3.2 � Phase 2: Dynamic Flow Management of Emissions

Objective: Utilization of predictive and prescriptive analytics for the optimization of 
emission reduction measures.

�AI-Powered Emission Forecasting

Train Long Short-Term Memory (LSTM) networks to predict seasonal demand for 
energy peaks.

�Prescriptive Mitigation Algorithms

Use recommender systems that recommend cost-effective abatement measures. For 
instance,  if a utility company arrives at an AI model and trains it, the model may 
recommend replacing a new coal plant with a solar farm in an irradiated region, 
leading to reduced emissions of 40% over 5 years.

�Using Digital Twins for Scenario Planning

Create digital twins of cities or supply chains to model decarbonization pathways. 
The AI-enhanced project Virtual Singapore tests how congestion pricing lowers 
transportation emissions.

�Implementation Example

A city government uses a digital twin to test the effects of a carbon tax on its indus-
tries. AI suggests a gradual approach to taxes, along with subsidies for green   tech-
nology adoption, balancing equity and efficacy.
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3.3 � Phase 3: Carbon Sequestration Optimization

Objective: Make natural and engineered carbon sinks as efficient as possible.

�AI-Driven Collective Land-Based Solutions

Train geospatial ML models to detect the optimal reforestation regions based on soil 
health, biodiversity,  and community land rights. Platforms like Restor. Modeling of 
1.5 billion km2 of land on the cryosphere, land surface, ocean, and earth sphere 
(Bastin et al., 2019) often combines satellite data and ecological databases, result-
ing in a global-ranked rundown of opportunistic locations.

�Precise Monitoring of the Offset Project

GAI: AI-powered image recognition: Deploy drones or satellites for tracking trees 
with GAI in reforestation projects. Using algorithms such as Google’s TensorFlow 
Lite, ILK can be detected in real time, mitigating the risk of offset invalidation.

�Engineered Sink Design

Generative AI for direct air capture (DAC) facility design. DeepMind’s AlphaFold, 
for instance, could make DAC less profitable by optimizing the molecular structures 
of CO₂ absorbing materials by 30%.

�Implementation Example

Restoration starts in degraded peatlands in Indonesia with the help of AINGO, 
while drones monitor water table levels and blockchain tracks every ton of seques-
tered CO₂, creating tradable credits.

3.4 � Phase 4: Integration of Market and Policy Adaptation

Objective: Integrate AI insights into carbon markets and regulations.

�Automatic Purchases of Carbon Allowances

Use reinforcement learning to create AI brokers that can trade in an ETS. These 
agents analyze permit prices,   regulator announcements, and weather data to opti-
mize firms’ returns.
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�Suspicious Behavior Detection Using Anomaly Detection

Unsupervised learning models (e.g., autoencoders) were used to detect suspicious 
offset transactions. Such tools could be integrated into the EU ETS  to support the 
avoidance of double counting of credits.

�Policy Sandboxes for Testing AI

Governments can design regulatory sandboxes to test firms’ AI-driven carbon strat-
egies. One example is a sandbox in California that tests AI-managed microgrids 
trading carbon credits peer-to-peer.

�Implementation Example

Blockchain-AI platforms, such as the IBM Carbon Asset Blockchain, automate the 
issuance of credits to a wind farm. To ensure integrity, smart contracts trigger pay-
ments only after the AI verification of energy production.

3.5 � Phase 5: Feedback Loops and Stakeholder Engagement

Goal: Transparent data enables collaborative continuous improvement.

�Adaptive Learning Systems

An online learning algorithm was deployed to adjust the carbon models according 
to direct feedback. For example, an AI model tunes the emission factors associated 
with hydrogen production when new data are available around electrolyzer 
efficiencies.

�Citizen Science Platforms

If only the data were trained on photos, users could report emissions (gas flaring) 
via mobile applications. AI checks submissions against public carbon databases and 
integrates them.
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�Multi-Sector Governance Councils

Form councils of AI practitioners, ecologists, and policymakers at the country and 
continent levels to monitor the implementation of the framework. One such collabo-
ration is the EU’s AI4Climate Initiative.

3.6 � Implementation Example

According to a governance council, an Amazon conservation project in Brazil is 
audited by AI. Sequestration metrics published on public dashboards build trust and 
motivate community engagement.

In turn, this framework transcends the hydrological metaphor with actionable 
tools; it   uses carbon as a resource to measure, manage, and reinvest. Weaving AI 
with ecological wisdom, it provides a scalable roadmap for net-zero transitions, a 
future where data flows with as much intent as water, sustaining a resilient  low-
carbon future. Figure 1 shows the circular framework for carbon management.

Fig. 1  Circular framework of carbon management (Source: Authors’ conception)
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4 � Implications

The proposed framework, AI’s hydrological blueprint for net-zero emissions, 
reframes carbon management from a siloed, reactive effort to a dynamic, systemic 
process. Combining AI with learning from hydrology, environmental science, and 
economics provides a new path for decarbonization. This assessment addresses its 
theoretical, practical, social, and sustainability implications,   highlighting opportu-
nities as well as challenges.

4.1 � Theoretical Implications

�Moving Systems Thinking Forward in Climate Science

This hydrological metaphor for the framework connects systems theory across eco-
logical and digital realms, facilitating interdisciplinary endeavors toward climate 
research. Less innovative carbon management tends to detach emissions reductions 
from wider socio-ecological contexts (Matos et al., 2022). This approach is aligned 
with resilience theory (Folke et al., 2016) by conceptualizing carbon as a “fluid” 
resource. For instance, the frame of carbon sinks as “reservoirs” parallels the idea of 
ecological carrying capacity, whereas AI’s role as “hydrological engineer” intro-
duces notions of computational agency into systems otherwise ruled largely by 
natural processes. This synthesis counters reductionist reticulation within climate 
economics, evidenced by cost–benefit analyses, by emphasizing system equilibria 
at the expense of marginal efficiency.

�Rethinking Carbon as a Resource

Its approach is built on the argument that carbon is a waste issue and bashed by re-
envisioning carbon as a circulative asset. This comes after the call of Anuardo et al. 
(2022) to identify and appreciate natural capital in economic systems. The frame-
work conceptually reframes carbon offsetting as a kind of “ecological irrigation,” 
with AI directing emissions to sinks for maximal impact, by applying hydrological 
principles—storage, flow, and purification. This paradigm aligns with circular econ-
omy models, but adds layers through real-time data flows, predictive analytics,  and 
contextualization.

�Artificial  Intelligence Ethics and Environmental Regulation

This framework poses the theoretical challenges of the agency in climate action. 
When do AI systems autonomously optimize carbon markets or choose offset sites 
that have consequences? This intersects with algorithmic governance and 
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environmental justice, where new ethics are critical to AI being a “steward” rather 
than a destabilizing force.

4.2 � Practical Implications

�Scalability and Cost Effectiveness

The phased-in framework allows scalable solutions for various stakeholders. Phase 
1: AI-powered carbon accounting reduces compliance costs for corporations. AI 
tools reduce emissions reporting errors by 25%, saving $1.2 million. Likewise, 
algorithmic trading in carbon markets (Phase 4)  reduces transaction fees by 
15–30%, as in the EU ETS. However, heavy upfront investments in sensor networks 
and AI infrastructure pose a barrier for SMEs and developing nations.

�Challenges for Policy and Regulation

Although AI improves policymaking accuracy, its integration requires regulatory 
ingenuity. For example, AI-managed “policy sandboxes” (Phase 4) require flexible 
governance structures to accommodate rapid technological shifts. Much of the 
existing AI ethics legislation, such as Europe’s upcoming AI Act, lacks specific con-
sideration of carbon perversion in its implementation over the coming decade. This 
raises data sovereignty challenges, with carbon data lakes controlled by multina-
tional corporations potentially sidelining local government.

�Technological Risks

The data AI uses to learn is massive and carries risks. If trained on biased data, such 
as undercounting emissions from the informal economy, mitigation strategies can 
become skewed. Similarly, cyber-attacks on centralized data lakes (or digital twins) 
in  Phase 2 are systemic, in that they can potentially ruin emission forecasts or mar-
ket stability.

4.3 � Social Implications

�Equity and Access

Without inclusivity, the framework runs the risk of embedding inequalities. 
AI-optimized reforestation, for one, might focus on high-sequestration areas and 
overlook the communities that rely on land for their livelihoods. In other contexts, 
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like Indonesia’s peatlands, projects have displaced indigenous providers, underscor-
ing the importance of participatory AI tools that leverage local knowledge. Likewise, 
algorithmic carbon trading (Phase 4) could penalize less tech-savvy corporations, 
exacerbating the divergence between smaller and larger emitters.

�Making Information Accessible and Engaging

The value of this framework is contingent upon social trust. Phase 5: If AI-enabled 
models alienate some stakeholders, citizen science platforms democratize data col-
lection. For example, communities adjacent to DAC facilities might oppose projects 
that rely on a black-box approach to AI decision-making. Open dashboards—like 
public sequestration metrics (Phase 5)—spur accountability and collective action.

�Labor and Skills Transition

The automation of carbon accounting and trading could be a traditional role in sus-
tainability consulting or auditing redundancy. But it also generates demand for 
hybrid skills—e.g., “carbon data engineers” who straddle environmental science 
and ML. In the developing world, reskilling initiatives are crucial for equitable tran-
sitions in the workforce.

4.4 � Sustainability Implications

�Trade-Offs and Co-Benefits of Environmental Innovations

It prioritizes nature-based solutions, thereby improving ecological sustainability. 
For example, AI-powered reforestation can improve biodiversity, and Bastin et al. 
(2019) estimated that 900 million hectares of forest restoration would shelter 70% 
of terrestrial species. However, overreliance on engineered sinks, such as DAC, 
would risk failing to devote adequate resources to systemic decarbonization. For 
instance, DAC plants can use as much as 2000 kWh/ton of captured CO₂, which 
may add to energy demand.

�Long-Term Resilience

The framework encourages adaptive capacity by mimicking hydrological cycles. 
Digital twins (Phase 2) allow societies to model   climate shocks (e.g., stress-testing 
grid resilience to wildfires) and adapt mitigation strategies in advance. But the 
energy footprint endangers its sustainability. Training large ML models releases as 
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much as 626,000 pounds of CO₂, requiring green AI disruptors, such as renewable-
powered data centers.

�Circularity and Intergenerational Equity

The circular logic of the framework, which considers emissions as feeds for sinks, 
is consistent with the principles of intergenerational justice. It expands sequestra-
tion benefits past short-term offset cycles by optimizing carbon storage in soils or 
forests. However, the short-term focus of carbon markets on trading profit risks 
undermines this outcome and emphasizes the importance of autonomous ecological 
AI models that prioritize the long-term health of ecosystems over quarterly profits.

�Synthesis: The Middle of Innovation and Ethics

These interventions suggest a rift between technological culture and socio-ecological 
pressure in the built environment based on the antagonistic effects of this frame-
work. Theoretically, it deepens systems thinking but mystifies orthodox economics. 
In practical terms, that means tools able to scale but require guardrails to help pre-
vent abuse. Socially, it facilitates participatory action, but it also threatens to create 
inequalities. Environment: It finds a way to balance itself with the boundaries of the 
planet, even while it grapples with its carbon footprint.

�Principles for Equitable Implementation

As part of this governance, as usual, you propose to set international standards, so 
that carbon management AI will be transparent and its algorithms can be inclusive 
in audits.

	(a)	 Equity: Community co-design should be required at all AI-driven offset projects
	(b)	 Sustainability: Incentivized deployment of AI with renewable energy infra-

structure to reduce its carbon footprint.
	(c)	 Education: Establish global partnerships on reskilling to develop a workforce 

that is trained in hybrid roles that merge AI and sustainability.

The hydrological metaphor of the framework is not just a rhetorical  device; it is 
an invitation to change our thinking about humanity’s relationship to carbon. It 
highlights a comprehensive vision for net-zero transitions via case studies, the 
framework of water systems, and shaping the possibility of AI. Yet, success depends 
on addressing ethical ambiguities, inclusivity, and evolutionary innovation of eco-
logical stewardship. As these societies confront the climate crisis, this critical 
framework reveals the truth: Technology won’t save the planet, but rather be in 
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alignment with nature’s intelligence, which may teach us how to be in flow with 
Earth’s rhythms, and not against them.

5 � Conclusion

The climate crisis we’re facing calls for more than incremental changes; it necessi-
tates a radical rethinking of how societies understand, treat, and value carbon. In 
summary, this chapter presented a transformational framework inspired by the met-
aphor of water systems and defined artificial intelligence (AI) as the hydrological 
engineer of the planet’s carbon cycle. By treating carbon as a dynamic resource, 
something to be monitored, directed, and reinvested, rather than a static pollutant, 
the framework links environmental science, economics, and technology. As we 
descend into the weeds, my guiding principles leap toward the rainbow trail: the 
need for systemic thinking, the emerging dual-edged nature of AI, and the call to 
align innovation with ecological and ethical conscientiousness.

5.1 � Breaking Down Barriers: Organizational Modeling

The hydrological metaphor reminds us that carbon management is not only a linear 
challenge—it is also a systemic one. Water  cycles link oceans, rivers, and rain 
clouds in the same way that carbon flows connect industries, forests, and regulatory 
marketplaces. This is piecemeal as conventional frameworks decouple the reduc-
tions, rewards, and renewals in an economy. Corporate carbon offsets, for instance, 
have historically prioritized cost over biodiversity, leading to monoculture planta-
tions, which harm ecosystems. The framework addresses this by embedding 
AI-powered capabilities—including dynamic carbon accounting and digital twins—
into an integrated loop in which data informs action that informs data. The weeklies 
come with feedback equilibrators, which are also seen in the water systems’ adap-
tive cycle.

This metaphor also reimagines carbon sinks as “reservoirs” that require judi-
cious oversight. AI’s ability of AI to monitor and optimize reforestation sites or the 
design and placement of direct air capture (DAC) facilities turns sinks from passive 
recipients into active contributors of a circular economy. But this transition neces-
sitates humility—no matter how advanced AI can simulate complex systems, it will 
never replace the value of healthy ecosystems. Thus, it argues, this framework calls 
for a middle ground between engineered efficiency and ecological wisdom, where 
technology enhances and does not eclipse natural processes.

From Data Lakes to Carbon Sinks: AI’s Hydrological Approach to Emissions
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5.2 � The Double-Edged Promise

AI’s role in this framework is paradoxical, transformative, fraught with contradic-
tions. On  one side, it democratizes climate action. Having realized the need to hold 
corporate and state actors accountable, platforms like Climate  TRACE compile sat-
ellite data and on-the-ground observations, processed with machine learning, to 
show the emission hotspots that hide the clarity of self-reported data. Similarly, a 
blockchain-AI hybrid enhances transparency in carbon marketplaces, reducing 
fraud and increasing trust in farmland and forest offset projects. Citizen science 
apps (e.g., Global Forest Watch) empower marginalized communities to report ille-
gal logging or methane leaks, providing a grassroots layer to global datasets.

But the promise of AI brings risks of its own. Centralized data lakes, for all their 
power, mean that there’s a risk of information monopoly, particularly in the hands 
of tech giants or rich countries, exacerbating the “digital divide” in climate gover-
nance. The impact it aims to have, most notably in terms of environmental justice, 
begs  an obvious question but one your average machine learning framework never 
seems to consider (think of a well-oiled machine): Can algorithmic bias, as in the 
case of facial recognition systems, replicate environmental injustice—for example, 
if an AI decides to prioritize offset projects in stable political areas instead of war 
zones? Also, AI’s energy appetite may soon outpace its utility: training large models 
can release as much CO₂ as five cars over the years that they are run. Addressing 
these challenges requires “green AI” solutions, such as energy-efficient algorithms 
and renewable-powered data centers, as well as broader ethical frameworks that 
guarantee equitable access to data.

5.3 � Innovation Within a Green Economic Frame: Ethical 
Stewardship and Planetary Respect

Planetary boundaries and social equity serve as the litmus test of the framework. 
Hydrological systems play diverse roles—from wetlands to rivers to glaciers—all 
of which contribute to maintaining ecological equilibrium. Similarly, carbon man-
agement should respect ecological and cultural diversity. For instance, AI-enabled 
reforestation should keep land rights for indigenous peoples front of mind, given the 
sustainable stewardship that groups like the Amazon’s Kayapo culture have pro-
vided to their forests for thousands of years. If technocratic solutions ignore the 
uniqueness of local contexts, they risk repeating another episode of colonial-
patterned extraction.

We also must reconceptualize progress and ethical stewardship. The framework’s 
sequential approach—which moved from data integration to stakeholder engage-
ment—stated the notion that urgency translates into better outcomes. Digital twins, 
for example, allow policymakers to simulate what the long-term effects of carbon 
taxes will be on vulnerable people, so that decarbonization does not exacerbate 
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poverty. Adaptive learning systems enable their emissions factors to be updated 
over time: we note that scientific knowledge is not static and evolves.

5.4 � Future Call for Humble Innovation

Transitioning from data lakes to carbon sinks is not simply a technical problem; it’s 
a philosophical one. It requires humanity to know itself not as a planetary overlord 
but as a participant in Earth’s cycles. AI that is firmly grounded in humility and a 
willingness to cross disciplinary boundaries can help smooth the transition. It’s like 
a river: if it floods, engineers might try to straighten its flow, but only by understand-
ing its natural bends can they preserve the ecosystems the river sustains. Likewise, 
AI needs to complement but not substitute the rhythms of the carbon cycle.

5.5 � The Path Ahead

To make this vision a reality, three urgent steps are needed.

	(a)	 Global Governance Frameworks: Establish global regulations for AI transpar-
ency, data sovereignty, and carbon market integrity to ensure technologies are 
commons-first.

	(b)	 Inclusive design: Mandate participatory strategies for AI design, designing the 
system’s entire life-cycle with indigenous knowledge and frontline communi-
ties embodied in offset projects and policy designs.

	(c)	 Education & Reskilling: Develop pipelines for hybrid jobs (e.g., carbon data 
analysts, AI ethicists) at the intersection of the technology and sustainabil-
ity realms.

In the end, this is not a blueprint for our perfect future, but a practical guide for 
aligning human creativity with the limits of our world. If we project forward the 
potential of AI through the prism of water systems, we can cultivate the domain 
through which carbon flows are planned and sustain life, just like the hydrological 
cycle itself—a hallmark of humanity’s capacity to intermingle invention with the 
planet we are on.
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1 � Introduction

A coastal city in Southeast Asia that used to be ravaged by monsoon floods every 
year now relies on an AI-powered climate resilience system. It uses machine learn-
ing models based on real-time satellite data, historic weather patterns, and urban 
infrastructure metrics to forecast flooding risks with 95-percent accuracy (Borgia 
et  al., 2024). City planners rely on these insights to dynamically reroute traffic, 
activate emergency protocols, and dispatch resources before the first raindrop 
reaches the ground (Das, 2020). In Brussels, a carbon accounting algorithm audits 
the emissions of multinational corporations in milliseconds, comparing supply 
chain databases against global climate treaties and compelling compliance (Das, 
2023). These are not science fiction scenarios; they are glimpses of a rapidly emerg-
ing reality in which AI is rewriting environmental governance rules.

As the world hurries toward its net-zero carbon targets, the shortcomings of tra-
ditional policy frameworks have become increasingly apparent (Das et al., 2024). 
Climate change is a hypercomplex and interlocked crisis that does not lend itself to 
static solutions (Das et al., 2024). Traditional policymaking—reactive, siloed, and 
mired in bureaucratic inertia—fails to keep pace with the speed and scale of eco-
logical degradation (Das et al., 2023). As asserted in the 2023 Global Climate Policy 
Report, 78% of countries fail to meet their commitments under the Paris Agreement, 
making innovative solutions imperative. Enter AI: Various technologies capable of 
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processing massive datasets, simulating results, and automating decision-making. 
This chapter claims that AI algorithms have begun to function as de facto environ-
mental policy agents to deliver mechanisms to re-envision climate change actions 
through three transformational lenses of impact assessments driven by AI, predic-
tive policy frameworks, and automated regulatory compliance systems.

There has been a paradigm shift regarding the use of AI in environmental gover-
nance (Di Virgilio & Das, 2023a). Policy historically draws from human expertise, 
political negotiation, and incremental data analysis (Di Virgilio & Das, 2023b). 
Algorithms consume petabytes of climate data—such as satellite-detected methane 
leaks or satellite-monitored deforestation rates—spitting out insights faster than 
human cognition is capable (Majerova & Das, 2023a). Kenya’s Ministry of 
Environment, for example, uses AI to map illegal logging in real time by matching 
satellite images with acoustic sensors to alert rangers within minutes. Similarly, the 
European Union’s “GreenBrain” initiative simulates the socioeconomic impact of 
carbon taxes across member states, giving policymakers the ability to stress test 
proposals before they go into effect. These examples demonstrate how AI can help 
enhance accuracy, lessen latency, and remove bias for environmental decision-
making (Majerova & Das, 2023b).

But such a change is still controversial. Critics have identified “algorithmic over-
reach,” when opaque A.I. systems could focus on power, marginalize public input, 
or entrench existing inequities (S. Mondal, 2020). Sixty percent of climate-focused 
AI tools are reliant on datasets skewed toward the Global North context and, as a 
result, the risk of these tools producing skewed and flawed outcomes when deployed 
elsewhere increases, according to a 2022 study by AI Now Institute. Moreover, out-
sourcing regulatory processes to machines raises ethical issues: are algorithms able 
to equitably weigh economic growth against ecological maintenance? Who is 
responsible for awarding an AI-powered policy? Such apprehensions emphasize the 
need for strong governance frameworks to enforce transparency, equity, and human 
oversight.

This chapter, based on policy analyses, interviews with more than 30 policymak-
ers, and global case studies, including Canada’s AI-powered wildfire forecasting 
systems and digital twin for urban sustainability, dissects AI’s dual role as a disrup-
tor and enabler of environmental policy. This chapter argues that while AI is not a 
silver bullet (S. Mondal et al., 2023, 2023), its strategic adoption could democratize 
climate action (S. Mondal et al., 2024), create data-driven democracies, and acceler-
ate efforts to move toward a net-zero economy (S.  R. Mondal & Das, 2023a). 
However, this future hangs on a crucial condition: our capacity to program not only 
the climate but also the values of justice and adaptability into the algorithms that 
will rule it (S. R. Mondal & Das, 2023b).

The following sections examine how each pillar of environmental policy will be 
transformed through AI, the risks and opportunities that such a transformation will 
entail, and the urgent dialogue that must emerge to ensure that algorithmic gover-
nance can serve planetary and societal well-being.
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2 � Literature Review

AI in environmental policy has the potential to control the final frontier for a net-
zero carbon economy. Through synthesizing interdisciplinary research, this litera-
ture review analyzes the technological, sociopolitical, and ethical factors shaping 
AI’s role in the climate governance process (S. R. Mondal & Das, 2023c). Insights 
synthesized from the policy studies, computer science journals, and the environ-
mental ethics literature suggest three strong themes: (1) AI as a transformative tool 
to enhance the effectiveness of policy (S. R. Mondal et al., 2022), (2) algorithmic 
bias and governance vacuum risks (S. R. Mondal et al., 2023, 2023), and (3) geopo-
litical and equity challenges setting the margins of AI  use (S.  Mondal & 
Sahoo, 2019).

2.1 � Policy Effectiveness: Innovation and Technology

The volume and variety of data that AI technologies are capable of processing are at 
the core of their application to environmental governance (Nadanyiova & Das, 
2020). The utility of recommender systems in combination with large databases 
alongside their potential to solve structural complexities that capitalist structures 
struggle to tackle also makes this area of academic interest. For instance, machine 
learning (ML) models (Tandon & Das, 2023) are quite suitable for predictive ana-
lytics (Vrana & Das, 2023a), which can be used to inform about upcoming extreme 
weather events, or modeling the outcome from carbon sequestration (Vrana & Das, 
2023b). A recent study found that AI-powered climate models can achieve 40 per-
cent lower prediction errors compared to conventional methods, thus driving more 
accurate adaptation strategies (Schneider et al., 2023). AI impact assessments are 
similar to environmental audits (Yegen & Das, 2023). The World Resources Institute 
research showed that satellite and Internet of Things (IoT) sensor network algo-
rithms identifying deforestation and methane leaks in near real time are better than 
manual monitoring (Chang et al., 2024).

Automation of regulatory compliance is another example of an AI’s power. Case 
studies supplementing the EU’s Corporate Sustainability Reporting Directive 
(CSRD), however, show that natural language processing (NLP) tools can indeed 
comb through thousands of corporate reports to highlight instances of greenwashing 
or non-compliance (Khan, 2024). Such applications would be in line with the notion 
of “smart regulation,” whereby AI serves to alleviate administrative burdens while 
simultaneously increasing the transparency of enforcement (Takyar & Takyar, 2023).
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2.2 � Algorithmic Bias and Governance Risks

Despite these advances, scholars have warned against techno-optimism, noting that 
AI systems learn from and amplify societal biases. A landmark 2021 publication in 
science cautioned that training datasets for climate models are frequently blind to 
Global South contexts, in which the models are ultimately designed to serve, poten-
tially distorting risk assessments in the most vulnerable regions (Anderson, 2025). 
The opacity of AI decision-making compounds these dangers. Political scientists 
claim that the so-called “black box” algorithms threaten democratic accountability 
because citizens are unable to inspect policy decisions produced by proprietary sys-
tems (Khalili, 2023). Policymakers, in interviews conducted for a 2023 OECD 
report, expressed concern that private tech firms are taking control of climate AI 
tools and prioritizing corporate interest over public goods, the report states. 
Additionally, the assignment of regulations to AI requires ethical dilemmas 
(Greenpeace International, 2025). There is an inquiry not limited to the likes of 
Ireton (2023): Can machines make decisions with accompanying trade-offs between 
economic growth and ecocide, which are ultimately value-based?

2.3 � Geopolitical and Equity Implications

The spatial distribution of AI resources has a significant effect on environmental 
applications. A 2023 report noted that 80% of climate AI patents are owned by firms 
within the USA, China, and the EU, creating a “governance divide” that marginal-
izes low-income nations. This inequity is further aggravated by infrastructural 
voids; Kenya harnesses AI for anti-poaching surveillance, but limited broadband 
access in rural areas limits its scalability (Wang et al., 2024).

Researchers have also pointed to tensions between AI-based efficiency and cli-
mate justice. For example, automated carbon markets might improve emissions 
trading, but disadvantage communities without digital literacy (Dhar, 2020). The 
drive behind AI also contradicts sustainability goals because it is dependent on 
energy-intensive data centers  (Bolón-Canedo et al., 2024). Within this discourse, 
the idea of “climate debt” arises, where critics suggest that many of the benefits of 
AI may be concentrated among industrialized countries responsible for emissions 
on a historical basis (Pickering & Barry, 2012).

2.4 � Frameworks for Interdisciplinary Governance

The recent literature recommends hybrid governance models that combine AI with 
human oversight. The framework of “policy informatics,” introduced by Jarrahi 
et al. (2022), argues for co-designing A.I. tools in collaboration with stakeholders, 
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from indigenous groups to urban planners, so that they are culturally and ecologi-
cally relevant. The AI Act (2024), which requires transparency in public-sector 
algorithms, is an example of regulatory efforts to find a balance between innovation 
and accountability (Cancela-Outeda, 2024). Conversely, experimental initiatives 
such as “AI for Earth” in Singapore reveal the potential of participatory algorithms 
to crowdsource community-led environmental solutions (Santos & Carvalho, 2025).

The literature emphasizes the double-edged nature of AI as a catalyst and disrup-
tor for environmental policymaking. Although its technological capabilities present 
new opportunities to fast-track decarbonization, challenges that remain unad-
dressed—from algorithmic bias to geopolitical imbalances—need timely attention. 
Interdisciplinary approaches must engage in future research, while enabling AI sys-
tems to be computationally sound, ethically robust, and democratically governed. 
As Yang et al. (2025) argue, the road to a net-zero future lies in “coding equity into 
the algorithm,” bringing together technological innovation with the tenets of climate 
justice.

3 � A Practical Framework for AI Implementation 
in Environmental Policy

To leverage the power of AI and minimize its risks, this framework outlines tangible 
processes for the design, implementation, and governance of AI-powered climate 
policies. Rooted in the main drivers of the literature—technological efficacy, equity, 
transparency, and adaptability—the framework emphasizes collaborative gover-
nance, ethical safeguards, and inclusive innovation.

3.1 � Data and Model Governance

Objective: To ensure representative high-quality data and transparent AI system 
design and development.

�Step 1: Ethical Data Audits

Audit training datasets for geographic, socioeconomic, and ecological representa-
tiveness. For instance, flood prediction models in South Asia need to integrate data 
from informal settlements and rural areas,  and not just from urban centers.
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�Step 2: Open-Source Climate Repositories

Open public data repositories (e.g., a “Global Climate Data Commons”) to democ-
ratize access. Do something akin to the EU’s Copernicus Earth observation pro-
gram, but with mandates for inclusivity, including translating datasets into local 
languages.

�Step 3: Explicability

AI tools deployed in policies must comply with explainable AI (XAI) requirements. 
For example, algorithms assessing wildfire risk should inform policymakers with 
visualizations that demonstrate how inputs (e.g., temperature and land use) influ-
ence outputs.

3.2 � Building Inclusive Culture and Capabilities

Objective: To bridge the gap in global resources by co-designing AI tools with mar-
ginalized stakeholders.

�Step 4: Applying Participatory  AI at AI Labs

Maximize the value of tools by building regional off-ramps, where policymakers, 
technologists, and communities come together to co-design these tools. One exam-
ple is Kenya’s “AI for Conservation Lab,” which collaborates with Indigenous 
groups to address poaching.

�Step 5: Global South Capacity Fund

Place a “Global AI-Climate Justice Fund” to resource digital infrastructure and 
skills training in poor countries. Look for use cases, such as solar-powered data 
centers or AI literacy programs for smallholder farmers, that offer both but also 
prioritize projects with potential.

�Step 6: Open-Source Toolkits

Create modular, interoperable AI platforms for shared functions  (such as emission 
tracking). Scalability is demonstrated by Chile’s “National AI for Climate” Platform, 
which makes free carbon accounting algorithms available for SMEs.
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3.3 � Ethical Overview

Objective: To integrate human rights and ecological ethics into algorithmic 
decision-making.

�Step 7: Performing Algorithmic Impact Assessments  (AIAs)

Requires AIAs for all climate-relevant AI systems, focusing on risks of equity, pri-
vacy, and environmental harm. An example of such a requirement can be found in 
the Directive on Automated Decision-Making, which requires AIAs of public-
sector tools.

�Step 8: Multi-Stakeholder Ethics Boards

Independently reviews high-stakes AI decisions (e.g., automated carbon trading) via 
cross-sectoral boards. Ethicists, climate scientists, and representatives from civil 
society, similar to the EU’s High-Level Expert Group on AI.

�Step 9: Liability Frameworks

Legal accountability for missteps in AI policy. For example, if an AI-powered irri-
gation system worsens water inequities, it is necessary to determine whether devel-
opers, policymakers, or operators are responsible.

3.4 � Adaptive Policy Integration

Objective: Artificial intelligence systems adapt to changing climates and soci-
etal needs.

�Step 10: Dynamic Policy Sandboxes

Pilot AI tools in limited environments before mass adoption. Singapore’s “AI 
Sustainability Sandbox” enables companies to test algorithms to ensure compliance 
with carbon pricing and monitor them as they go.
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�Step 11: Iteration with Feedback

Include feedback loops through which affected communities can report algorithmic 
biases or unintended consequences. One example of this is India’s “AI for Air 
Quality” initiative, which updated pollution models based on feedback from farm-
ers, who said that crop-burning data did not match reality.

�Step 12: Standards for Interoperability

Ensure that A.I. systems can “talk to each other” across jurisdictions. Train on 
Wonky Data, Update on dated structures/tools (for example, ISO) to align global 
North & South carbon markets.

3.5 � An Alignment Towards Algorithmic Stewardship

This framework supplies the AI model not as a substitute for human judgment, but 
as a complement to fair climate performance. There are three key factors to success.

	(a)	 Live  Governance: Combine machines with democracy.
	(b)	 Precautionary Innovation: Place “do not harm” safeguards first in AI deployment.
	(c)	 Transnational Solidarity: Rework (not risk, resources, and rewards).

If policymakers institutionalize the above steps, they can code AI systems that 
are not only wise but also fair, ensuring that algorithmic governance is in step with 
an urgently needed, inclusive shift to a net-zero future. Figure  1 represents 
AI-powered climate policy framework.

4 � Implications

The proposed framework for integrating AI technologies into the environmental 
policy sector has tremendous theoretical, social, sustainable, and practical implica-
tions. Thus, it poses both a challenge to establish ways of thinking about the rela-
tionship between societies and climate action, through algorithmic tools and 
pathways, and warnings, for building a net-zero future.
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Fig. 1  AI-powered climate policy framework (Source: Authors’ conception)

4.1 � Theoretical Implications: Redefining Governance 
and Authority

The framework unsettles dominant theories of environmental governance that pri-
oritize human-centric incremental decision-making. Casting AI as a co-pilot in 
policy design, it follows complex systems theory to address climate change as a 
nonlinear, interconnected tension that requires adaptive, data-driven solutions. This 
transition undermines Weber’s understanding of bureaucratic rationality which 
human expertise and hierarchical structures prevail. Instead, it advances algorithmic 
governance theory, wherein machine learning models become dynamic real-time 
arbiters of policy outcomes.

The incorporation of ethical safeguards (e.g., Algorithmic Impact Assessments) 
further supports environmental justice theory by institutionalizing equity as a pre-
condition rather than an afterthought. However, it raises concerns about technologi-
cal determinism: To what extent can AI reckon with the sociopolitical contexts that 
produce climate vulnerability, or does it simply risk reducing justice to a variable 
computed like any other? The framework’s attention to participatory design 
addresses this concern, in part by drawing on deliberative democracy theory and 
demanding that AI tools be co-created with the affected communities.
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4.2 � Social Consequences: Equity, Agency, and Trust

Socially, the success of a framework depends on the balance between efficiency and 
inclusivity. Through an emphasis on ethical data audits and open-source toolkits, it 
could democratize climate AI access; for instance, indigenous communities in the 
Global South monitoring deforestation could use technology previously the pur-
view of wealthy countries. Initiatives such as the Global South Capacity Fund take 
steps to free the future of digital technology from corporate dominance and offer a 
roadmap for redistributing technological power.

However, these risks persist. In the absence of enforceable accountability mecha-
nisms (e.g., liability frameworks), AI may monopolize decision-making for tech 
elites, undermining public trust. For example, carbon trading algorithms could have 
blind spots that benefit corporations that have the resources to game the data to be 
fed into the algorithm. The framework’s insistence on multi-stakeholder ethics 
boards is therefore an attempt to institutionalize checks on corporate influence simi-
lar to those offered by social contract theory and the reframed relationship between 
citizens, states,  and technology suggested by the framework. The scalability of par-
ticipatory models has yet to be tested in areas with a thin civic infrastructure.

4.3 � Sustainable Implications: Innovation Within 
Planetary Boundaries

Through the lens of sustainability, this framework propels the intersection of tech-
nology and ecology. AI-enabled predictive systems may optimize renewable energy 
grids or circular supply chains, thereby accelerating decarbonization. For instance, 
dynamic policy sandboxes enable high-velocity iteration of various potential cli-
mate strategies, which not only complements our precautionary principle, but also 
allows interventions to be tested before full-scale deployment.

However, the ecological footprint of artificial intelligence presents some contra-
dictions. Large models require a ton of energy and water to train, which is likely 
enough to eliminate carbon savings. The framework starts to mitigate this by advo-
cating solar-powered data centers and  “green AI” toolkits to ensure innovation con-
siders planetary boundaries theory. Interoperability standards can also help 
harmonize inconsistent national-level efforts in global carbon markets, such as 
addressing the “tragedy of the commons” for climate governance. Nevertheless, the 
tension between AI’s immediate efficiency dividends and long-term ecological 
costs calls for ongoing vigilance.
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4.4 � Practical Implications

In practice, the steps laid out by the framework are lofty, but doable. Testimonials of 
feasibility already exist in the form of ethical data audits and explainable AI proto-
cols piloted in the EU and Canada. However, the challenge lies in resource-
constrained environments. Despite democratizing data, open-source repositories 
require constant internet access and technical skills—obstacles in places where 40% 
of the population is not digitally literate.

The Global Climate Justice Fund works toward this but relies on sustained politi-
cal will and transnational funding, both of which are precarious. Liability frame-
works face jurisdictional fragmentation that is similar; the Silicon Valley developer 
may evade responsibility for harm using an algorithm that is deployed in Bangladesh. 
The framework’s adaptive integration pillar (e.g., feedback-driven iteration) plays a 
key role in that regard, but it may not go far if the bureaucracies to be integrated are 
resistant to change.

The implications of the framework tell a two-fold story of promises and precau-
tions. It is a computer-generated speculation on a new genre of environmental gov-
ernance that bridges AI ethics, the holistic universe of machine learning, and 
planetary stewardship. Socially, it elevates disenfranchised voices, but can deepen 
inequities without scrutiny. On the sustainable side, it reconciles innovation and 
ecological limits, yet depends on greening AI itself. Realistically, its success 
requires unprecedented worldwide co-operation and adaptive governance.

Ultimately, the merit of the framework lies in its acknowledgment that, through 
its roles as designer, operator, and use-case developer, AI is not a neutral tool but 
rather a political agent determining the course of climate justice in our futures. It is 
a path toward a smarter and fairer environmental policy—one that would be neces-
sary to achieve a livable, net-zero world—that also codes equity into algorithms and 
decentralizes technological power.

5 � Conclusion

The climate crisis needs urgency, but it also requires reinvention. As global tem-
peratures climb and ecosystems crash, the shortcomings of the twentieth-century 
policy hit tools—slow, siloed, and often biased toward entrenched power struc-
tures—have become intolerable. In this chapter, we have presented the case that 
artificial intelligence (AI), if applied strategically and ethically, represents a para-
digm shift in environmental governance. By leveraging AI’s ability to analyze vast 
datasets at hyper-speed, perform predictive modeling, and automate decision-
making, societies can redefine climate action as not only dynamic but also inclusive, 
engaging a host of stakeholders from the traditional world of climate science to 
impacted communities. However, this transformation is not guaranteed. Whether 
the algorithms currently in our hands shine potential or some future hellscapes on 

Coding the Climate: AI Algorithms as the New Environmental Policy



228

Earth depends on building equity, transparency, and accountability into the code 
that will define our collective future.

5.1 � Power Reshaped: From Centralization 
to Collective Stewardship

AI’s most telling implication of AI is its ability to redistribute agency in climate 
governance. The dominant model of environmental policy for many of the past 
50 years has taken the role of state actors, multinational corporations, and technical 
elites, and ignored the voices of frontline communities, Global South nations, and 
others. The framework we propose here, rooted in participatory design, open-source 
toolkits, and transnational solidarity, questions this hierarchy. For example, region-
ally based AI labs co-designed with indigenous knowledge holders, piloted in 
Kenya and Canada, show how technology can amplify the voices of the marginal-
ized rather than silence them. By decentralizing data access and democratizing 
innovation, AI could be the touchstone for a transition from top-down governance 
to polycentric stewardship, where communities, governments, and algorithms are 
equal partners.

But this vision is facing daunting headwinds. The uneven distribution of AI 
resources around the world, and the role of migration and the Global South, has the 
potential to be neocolonial, whereby the world’s poor are mined for their data to 
optimize algorithms, which ultimately serve the Global North. However, like the 
Global AI-Climate Justice Fund, its lack of binding mechanisms will render it as 
just another international summit good-intention tool. The lesson is stark: techno-
logical disruption needs to be accompanied by political and economic disruptions.

5.2 � A Double-Edged Sword of Speed

The promise of AI to accelerate climate action is as great as its greatest peril. Speed 
saves lives and cuts emissions, as demonstrated by predictive models that can fore-
cast wildfires days ahead of time and algorithms that can hone in on optimal renew-
able energy grids. But speed without oversight risks raining harm. Automated 
carbon markets, for example, could streamline emissions trading but also contribute 
to greenwashing if AI systems prioritize efficiency over the health of the ecosystem. 
AI-recommended policy choices could be made at machine speed, in line with dem-
ocratic deliberation, short-circuiting public discussion of trade-offs between eco-
nomic growth and environmental safeguarding.

The framework hedges against this tension by “precautionary innovation” sand-
boxing algorithms to be run in controlled  environments such that iterative feedback 
loops become mandatory. These moves acknowledge a harsh reality: in the race to 
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net-zero, not every measure of speed is forward-moving. The need to take time to 
make sure things are fair and accurate is not a luxury; it’s a necessity.

5.3 � The Ethical Algorithm: Machine Logic and the Planet

The intersection of AI and environmental policy is, at its core, ethical. The climate 
crisis is not only technical; it is a moral challenge that stems from centuries of injus-
tice and short-termism. AI systems trained on biased datasets or designed toward 
maximum corporate profit will reproduce these pathologies. The framework’s focus 
on Algorithmic Impact Assessments (AIAs) and multi-stakeholder ethics boards is 
an important step toward value-sensitive design—programming algorithms to pri-
oritize ecological health and human dignity.

However, ethical A.I. involves more than checklists; it requires a rethinking of 
“success” in climate policy. Metrics have to go beyond emission reductions or cost 
savings to include justice outcomes, such as those who enjoy the benefits of clean 
energy or have their indigenous land rights protected. An example of how technical 
tools can force clarity and both sustainability and equity is Chile’s National AI for 
Climate Platform, which emphasizes transparency in carbon accounting for small 
businesses.

5.4 � The Road Ahead: From Code to Coalition

The road to a net-zero future will not be paved in Python or R but rather in the col-
lective actions of policymakers, technologists, and citizens. The framework I out-
line here is not a prescription as much as a provocation, an invitation to reimagine 
governance in a time of planetary upheaval. Three priorities stand out.

	(a)	 Climate AI Governance Architecture: Short of the ideal, create binding treaties 
to govern climate AI, such as the Paris Agreement, focused on requests for pro-
posals with binding standards for data equity and algorithmic accountability.

	(b)	 Decolonizing Innovation: Work to transfer funding and intellectual property 
ideas to engineers in the Global South to build solutions that serve the many, not 
the few.

	(c)	 Education as Empowerment: Foster AI literacy programs to empower farmers, 
urban planners, and other citizens to engage critically in algorithmic tools.

A climate AI in California was designed in 2023 to prioritize wealthier neighbor-
hoods for wildfire evacuation, inadvertently overlooking mobile home parks popu-
lated by older residents. The fault lies not in the code but in the data—a sobering 
lesson that algorithms mirror the values of their creators. As we code the future of 
the climate, we also need to code compassion, justice, and humility in our systems. 
While AI will not save the planet, it can equip people who will. The biggest 
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algorithm is not machine learning but collective learning, which acknowledges that 
the struggle for a livable world is one we need to—and win—together.
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1 � Introduction

It is in this context (a world where climate change has transcended the environmen-
tal discourse to become a core business issue (Borgia et al., 2024)) that organisa-
tions face their adaptation ultimatum: adapt or perish (Das, 2020). The increasingly 
frequent use of climate disasters (Das, 2023), from fires consuming supply chains to 
floods eating into global trade, has placed businesses under time pressure (Das 
et al., 2024b). Digital Darwinism, in this context, is not a metaphor, but a survival 
of the fittest. It embodies the idea that in the Anthropocene, only those enterprises 
that can digitally innovate will survive (Das et al., 2024ab). Moving up the succes-
sively chain, artificial intelligence (AI) was identified in this chapter as the corner-
stone of this transition, being a proprietary asset that allows the enterprises to 
address climate volatility while being naturally aligned for meeting the world-zero 
aspirations in the coming decades (Das et al., 2023).

Drawing on insights from organisational theory, climate science, and empirical 
studies, we re-examine how AI-augmented advances in risk appraisal, supply chain 
agility and scenario planning are rewriting the playbook for corporate survival in an 
age of global heating (Di Virgilio & Das, 2023a). The Intergovernmental Panel on 
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Climate Change (IPCC) Sixth Assessment Report enforces a terrifying truth: 
Warming exceeding 1.5 °C globally will occur within the next few decades, causing 
cascading impacts across economies  (Di Virgilio & Das 2023b). This means busi-
nesses face systemic risks, such as physical, regulatory, and reputational risks 
(Majerova & Das, 2023a). According to the World Economic Forum, climate inac-
tion could cost the global economy as much  as $23 trillion by 2050. However,  in 
this crisis, there is an opportunity. Everyone knows that the transition to a net-zero 
economy requires transformative approaches, which are pushing companies  to jet-
tison legacy practices and adopt adaptive capacity (Majerova & Das, 2023b). Here 
lies the intersection with  organisational theory and urgency; theories of dynamic 
capabilities, for instance, emphasise agility in reconfiguring resources to address 
existential threats (S. Mondal, 2020). Companies will now have to use AI as a tool 
and  a digital nervous system to anticipate disruptions and make innovation happen 
(S. Mondal et al., 2023b, 2023a).

1.1 � The Role of AI in Developing Climate  Resilience

The predictive power  of AI is turning the climate risk assessment on its head. 
Traditional models, reactive and siloed, fall short in addressing the nonlinear 
impacts  of climate. Machine learning algorithms, by contrast, sift through massive 
troves of data—ranging from satellite images to socioeconomic trends—to predict 
risks  with fine-tuned specificity (S. Mondal et al., 2024). Insurers use  AI to price 
real-time climate vulnerabilities; agricultural firms deploy it to anticipate crop fail-
ures (S. R. Mondal & Das, 2023a). Apart  from risk mapping, it allows for the resil-
ient supply chain design. Think over how organisations, including IBM and 
Microsoft, reengineer business, with AI  to model disruptions, adjust the logistics 
and supply chain on the fly and change sourcing strategies (S. R. Mondal & Das, 
2023b). Such digital ecosystems decrease reliance on  fragile nodes and transform 
supply chains into dynamic adaptive networks (S. R. Mondal & Das, 2023c).

AI-enabled scenario planning goes beyond static models, enabling firms to 
stress-test strategies against various climate futures (S.  R. Mondal et  al., 2022). 
Tools such as generative adversarial networks (GANs) simulate everything  from 
policy changes to extreme weather, allowing the decision-makers to stress-test 
decarbonisation pathways (S. R. Mondal et al., 2023b, 2023a). This iterative pro-
cess parallels Schumpeter’s theory of creative destruction, where disruption  gives 
rise to novelty. Energy majors like Shell, for example, use AI scenarios to  shift 
investments away from fossil fuels and into renewables, making flexibility a central 
part of long-term planning (S. Mondal & Sahoo, 2019).
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1.2 � Interdisciplinary Synthesis: The Road to Net-Zero

This chapter connects climate science’s dire  warnings with the development of 
practical business strategy (Nadanyiova & Das, 2020). Examples from  companies 
like Patagonia and Tesla show how to create resilience through embedding AI in the 
corporate DNA (Tandon & Das, 2023). Patagonia’s AI-augmented lifecycle assess-
ments minimise waste while Tesla’s autonomous energy  grids showcase distributed 
adaptation. These stories point to a seismic shift: climate  resilience is not a cost 
centre but a competitive advantage in the net-zero economy (Vrana & Das, 2023a).

Just as the planet nears tipping points, businesses are approaching a  Darwinian 
threshold, too. Moreover, as  a result, AI-powered Digital Darwinism provides a 
blueprint for survival—a diagnosis of climate threats as a shifting gear for catalys-
ing new business models under a sustainable ethos (Vrana & Das, 2023b). 
This  chapter posits that adapting to this marriage between AI and organisational 
agility is not optional but existential (Yegen & Das, 2023). It is survival for both 
business and humanity at stake—companies  will have to adapt or perish in the race 
for net-zero.

2 � Literature Review: Climate-Resilient Business Strategies

The convergence of AI with climate resilience initiatives embodies a paradigm shift 
in the business response to the Anthropocene. This review integrates literature from 
various disciplines, focusing on three interrelated topics: AI-enhanced climate risk 
assessment, resilient supply chain design, and AI-enhanced scenario planning, 
grounded in organisational theory and climate science.

2.1 � AI and Climate Risk Assessment

With massive datasets, AI has transformed climate risk assessment from static, his-
torical analyses into dynamic, predictive modelling. For example, traditional risk 
models miss the point that compounding climate impacts—like cascading supply 
chain failures or nonlinear feedback loops around temperature—do not fit neatly 
into such quantitative risk analyses, based on Gbp or special interest effects, they 
can ideally limit in scope to Gbp. This gap is bridged through integrating geospatial 
data with climate projections and socioeconomic factors through AI (Jones et al., 
2023). For instance, ML algorithms are now reliably predicting regional climate 
extremes to help firms future-proof for disruptions (Camps-Valls et  al., 2025). 
Camps-Valls et al. (2025) published an article on ML models that reduced predic-
tion errors by 40% for regions most at risk of flooding, allowing insurers and manu-
facturers to protect their assets. Mentioned AI-enabled platforms simulate local 
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climate effects; firms trial the resilience of infrastructure investments during adver-
sity (Sjödin et al., 2023). However, critics warn that an overdependence on AI, with-
out proper human retention of knowledge and oversight, could lead to inappropriate 
risk prioritisation, due to potential biases in the training data (Zhai et al., 2024).

2.2 � Resilient Supply Chain Design

The urgent need for supply chain resilience emerges as climate disruption reveals 
weaknesses in globalised networks. According to Ivanov (2023), AI creates “digi-
tal  twins” or virtual replicas of supply chains, facilitating simulating disruptions in 
linear systems and optimising responses. Two thousand twenty data collected dur-
ing the COVID-19 pandemic showed that demand for AI-driven logistics platforms 
increased by 30% over that of firms not adopting such platforms, despite major port 
closures. For example,   circular economy outcomes can be facilitated through 
AI-based tracking of material flows and predicting potential waste hotspots (Zhou, 
2025). However, resilience is more than technology; it is about organisational adapt-
ability. This echoes Teece’s (2007) dynamic capabilities theory, which argues that 
firms must  “sense, seize and reconfigure” resources to weather shocks. Examples 
of this can be found in case studies through IBM’s AI-driven supply chain hubs, 
which showcase how real-time data from IoT sensors potentially reduced carbon 
footprints while profit remained intact (Gramener, 2022). Still, this group has some 
limitations regarding small and medium enterprises (SMEs) that do not have the 
necessary means to adopt AI technology (Erdiaw-Kwasie et al., 2023).

2.3 � AI-Driven Scenario Planning

Scenario planning, a qualitative exercise, uses AI to model intricate climate futures. 
Thanks to generative adversarial networks (GANs)  and reinforcement learning, 
firms can simulate thousands of scenarios, from carbon tax hikes to resource scar-
city (Hao et al., 2024). Meanwhile, Shell’s “Sky 2050” AI-powered scenario quanti-
fies stranded asset risks in fossil fuels, which helps to inform us of its pivot to 
renewables. Such tools reflect Schumpeterian “creative destruction” (Oladipo, 
2025), in which climate crises lead to innovations. However, some people question 
AI’s black-box nature. Lack of transparency puts scenario outputs at risk of distract-
ing executives, as with misaligned net-zero pledges that drew criticism from the 
Science-Based Targets initiative. Recent frameworks such as “explainable AI” 
(XAI), which highlight the pathways that lead to decisions made by machine learn-
ing models, are bridging this gap by making climate strategies adaptive and account-
able (Saeed & Omlin, 2023).
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2.4 � Synthesis Across Disciplines and Gap Identification

The literature emphasises the importance of AI in climate resilience but identifies 
interdisciplinary gaps. Climate science quantifies physical risks, but organisational 
theory lacks frameworks for AI integration (Lewis et al., 2024). Although evidence 
suggests that hierarchical organisations are outdone in innovations (Krippendorff & 
Garcia, 2023), little attention has been paid to how corporate governance structures 
similarly limit AI adoption. Furthermore, ethical issues, e.g., AI-caused job losses 
in disadvantaged regions, remain relatively unexplored (Dwivedi et al., 2023).

AI’s promise as a climate resilience catalyst is well substantiated, but its success 
rests on cross-disciplinary collaboration, ethical governance, and equitable access. 
Data collection and dissemination: The initiatives encourage energetic discussion 
from Australia’s types of businesses, research and development facilities, universi-
ties, applications (i.e. technology), and government sectors that transfer knowledge 
through outreach programs to communities and worldwide programs that provide 
the basis for continued research. The industrial world is however, not only focused 
on low-carbon footprint development from a technical perspective, but also one that 
emphasises the importance of energy and carbon footprints in the new world where 
businesses need to scale up their carbon reduction programs, ensure that they are 
forced to  face the consequences of self-regulation, and be made responsible for 
their implications; all of which are now beneficiaries of a robust technological infra-
structure in which commercial businesses with a small customer base can contribute 
meaningfully while focusing their research and development utilisations on impor-
tant strategic goals. Research must determine the best pathways for establishing 
systems that will enable small businesses to measure their carbon footprints appro-
priately, contribute to the critical net-zero transitions in a cost-effective manner, 
consider algorithmic transparency in delivering these means to small businesses, 
and address the deployment of artificial intelligence in the development of a net-
new zero-transition for the latter.

3 � Digital Darwinism Resilience Framework

Transitioning to a net-zero economy, businesses must adopt an ideal-led AI-fuelled 
framework to navigate climate risks and maximise adaptive opportunities. Building 
on organisational theory,   climate science and technological innovation, this frame-
work provides concrete steps for making climate resilience the new DNA of busi-
ness. The framework consists of four interconnected pillars: Climate Intelligence 
Integration, Adaptive Supply Chain Ecosystems, Dynamic Scenario Planning, and 
Organisational Agility (Fig. 1). The 3 pillars are complemented with practical tool-
kits and governance models to let firms operationalise Digital Darwinism.
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Fig. 1  AI-fueled framework for climate resilience (Source: Authors’ conception)

3.1 � Step 1: Featured Data Provider: Climate 
Intelligence Integration

Goal: Transform raw climate data into actionable insights to mitigate risk.
Components:

	(a)	 Data from the above sources can be integrated with AI-Powered Risk Mapping. 
ML models are trained on satellite data (NASA’s Earth Observing System), IoT 
sensors, and socioeconomic databases. One example is Google’s Flood 
Forecasting Initiative, which employs ML to predict floods so that firms like 
Unilever can adjust their logistics proactively.

	(b)	 The Role of AI in Impact Assessment and Materiality Assessment: Prioritise 
Risks, Sydney, Australia. Solutions like Salesforce’s Net Zero Cloud automate 
this process, linking risks with ESG objectives.

	(c)	 Real-Time Adaptive Strategies: Adopt AI-powered dashboards (Environmental 
Intelligence Suite) to continuously monitor emissions, regulatory changes, and 
stakeholder sentiment and respond in real time.

Governance: Cross-functional climate task forces to authenticate AI outputs and 
mitigate algorithmic bias.
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3.2 � Step 2: The Future of Supply Chains: A Paragraph 
Adaptive Supply Chain Ecosystems

Goal: Turn linear  supply chains into self-healing networks.
Components:

	(a)	 Digital  Twins: Create digital twins of supply chains using platforms like 
Siemens’ MindSphere. During the Suez Canal blockage in 2021, Maersk used 
digital twins to explore alternative routes and reduce delays by 25%.

	(b)	 AI for Decentralised Sourcing: Use AI to discover regional suppliers,   enabling 
diversified sourcing. For example, AI-powered platforms built by Nestlé pro-
cure cocoa from climate-resilient farms in West Africa, allowing for reduced 
reliance on drought-affected areas.

	(c)	 Closed-Loop Economy: Use AI with blockchain (e.g., IBM’s Food Trust) to 
track materials from extraction to recycling, reducing waste. With its AI-driven 
Worn Wear program, Patagonia is extending product lifecycles by 40%.

Governance: Implement agile procurement policies and reward suppliers that 
embrace transparency and low-carbon business models.

3.3 � Step 3: Dynamic Scenario Planning

Goal: Challenge strategies with varied climate futures.
Components:

	(a)	 Generative AI Models: Use tools like OpenAI’s GPT-4 or Climate Bert to model 
scenarios such as carbon tax increases or renewable-energy innovations. AI 
informed Shell’s $6 billion annual spend on renewables, specifically of its “Sky 
2050” model output.

	(b)	 Adaptive Strategy Repurposing: Integrate reinforcement learning models 
within the decision-making processes. For instance, NextEra  Energy utilises 
AI to make minute-by-minute adjustments to its investment in wind farms 
based on weather data.

	(c)	 Stakeholder Collaboration Platforms: Use AI-enhanced platforms like 
Microsoft’s Planetary Computer to co-create strategies with governments and 
NGOs, ensuring alignment with regulations.

Governance: Use explainable AI (XAI) frameworks to audit scenario outputs and 
ensure transparency over net-zero commitments.
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3.4 � Step 4: Organisational Agility

Goal: Nurture to create a culture of innovation and resilience.
Components:

	(a)	 Dynamic Capabilities: To align with Teece’s (2007) framework, train employ-
ees to “sense” climate risk (for example, through AI literacy programs), “seize” 
opportunities (for  example, green product R&D), and “reconfigure” resources 
(for example, redeploying capital from fossil fuels to carbon capture).

	(b)	 Decentralising Decision-Making: Leverage AI tools such as Salesforce’s 
Einstein to enable frontline teams to make data-backed decisions without the 
bottleneck of hierarchy. One example is Tesla’s nimble action to address battery 
shortages amid the 2022 lithium boom.

	(c)	 Leaders: To provide accountability, all organisations must onboard Chief 
Climate Officers (CCOs)—those responsible for AI integration, a practice 
adopted by Microsoft and Apple.

Governance: Align executive compensation with climate KPIs and verified by 
AI audits.

3.5 � Implementation Roadmap

	(a)	 Assess Baseline Maturity: Apply AI maturity models (i.e.,   Capgemini’s 
Climate Resilience Index) to assess near-term capabilities.

	(b)	 Screener for all Placeholder Examples: Pilot  AI solutions: Start small in high-
impact areas (e.g., Google’s DeepMind saves 40% of data centre cooling costs).

	(c)	 Scale with Governance: Integrate AI into corporate governance through climate 
risk committees and ethical AI charters.

	(d)	 Iterate and Collaborate: Work with academia (e.g.,   MIT’s Climate Grand 
Challenges) to polish models and best practices.

3.6 � The Role of an Ongoing Evolution

This framework is not a checklist but a cycle of learning and evolution. Integrating 
climate intelligence, cultivating adaptive ecosystems, enabling flexible planning, 
and developing agile capacities will help businesses prosper in the net-zero era. The 
Darwinian threshold is clear: adapt with AI or perish. Companies operationalising 
this framework will withstand climate disruptions and drive the transition to a resil-
ient and equitable economy. Figure 1 shows an AI-fueled framework for climate 
resilience.
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4 � Implications

Incorporating artificial intelligence (AI) into climate resilience strategies has sig-
nificant theoretical, practical, social, and sustainable implications. These implica-
tions challenge existing business, society, and ecosystem interaction paradigms in 
the Anthropocene, presenting both transformative opportunities and ethical 
conundrums.

4.1 � Theoretical Implications

AI renders resource-based view (RBV) and dynamic capabilities theory moot, as 
they focus on tangible resources and gradual adjustment. AI brings a new paradigm 
of algorithmic agility that allows speedy restructuring of both digital and physical 
resources to respond to climate shocks (Teece, 2007). For instance, AI-powered 
predictive analytics allows firms to “sense” risks before they manifest, overturning 
traditional theories’ “detection” focus.

Role of AI in Climate Science: It connects detailed climate models (e.g., IPCC 
scenarios) to business decisions. Reflecting this, theories of complex adaptive sys-
tems become salient, as businesses are increasingly viewed as nodes in intercon-
nected socio-ecological networks. Such an approach requires cross-disciplinary 
co-design, best exemplified by a tool like Climate BERT, which translates scientific 
jargon into actionable business information.

Ethical Governance Gaps: Theoretical frameworks for AI ethics cannot over-
come dilemmas specific to climate, like prioritising AI investments in wealthy 
regions to the detriment of vulnerable areas. This makes the case for theories that 
link climate justice to the governance of technologies.

4.2 � Practical Implications

Operational Efficiency vs. Complexity: Although AI improves supply chains and 
energy consumption (such as Google’s 40% decrease in cooling costs, thanks to 
DeepMind),   deploying it requires immense expertise and technical and data infra-
structure capability. Small and medium enterprises (SMEs)  typically have limited 
resources, leading to a potential “resilience divide”.

Transparency in Detailed Decision-Making:   AI-based digital twin tools enhance 
scenario planning but function as “black boxes”. For example, the AI models Shell 
uses to navigate its renewable transition are not openly explainable, raising con-
cerns around accountability. Proprietary algorithms vs. stakeholder trust: how firms 
can have it all.
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Workforce shifts: AI performs functions in carbon-intensive industries (fossil 
fuel transportation logistics), requiring retraining. AI deployment is now accompa-
nied by green job training from companies like Siemens, which featured their expe-
rience in line with the just transition.

4.3 � Social Implications

Equity and Access: AI’s benefits are not evenly distributed. For instance, climate 
risk platforms such as ClimateAI are too costly for farmers in sub-Saharan Africa, 
worsening global inequality. In contrast, India’s AI-driven AgriStack offers small-
holders visibility into monsoon forecasts and displays inclusive promise.

Neighbourhood agency:   AI can dilute local knowledge using a top-down 
approach. Participatory frameworks—including the AI-enabled drought response 
co-designed with pastoralists in Kenya—demonstrate how communities can create 
tools that reflect cultural contexts.

Ethical Risks: Bias in training data may emphasise corporate profit instead of 
human well-being. In 2021, a model used by an AI-powered energy trading com-
pany—supplier to a European utility company—disproportionately raised energy 
prices for low-income households during heatwaves, leading to backlash.

4.4 � Sustainable Implications

Net-Zero Acceleration: AI fast-forwards decarbonisation, optimising renewable 
grids (NextEra Energy’s wind farms) and circular systems (IBM’s blockchain for 
plastic recycling). However, AI’s carbon footprint—training a single model can pro-
duce 284 tons of CO2—calls for “green AI” innovations such as energy-efficient 
algorithms.

Long-Term Ecological Concern: Because AI interventions tend towards a short-
term focus on reducing risk, they may overlook the health of ecosystems. For exam-
ple, AI-enabled alerts for deforestation in the Amazon are linked to the timber 
supply chain grids rather than to biodiversity loss. Planetary boundaries must fea-
ture in design principles for sustainable AI.

Intergenerational Equity: AI’s climate solutions, like carbon capture forecasting, 
need not be at the cost of future generations (e.g., algorithmic lock-in to unproven 
tech). The AI Act, 2023, requires sustainability impact assessments by default, 
exemplifying responsible innovation standards.

AI-enabled climate resilience can be neither uniformly positive nor static. In 
theory, it calls for new paradigms that blend agility to engage in technological and 
economic change with robust custodianship of ecological systems. It needs equita-
ble access and transparency so that this does not worsen inequalities practically. 
Socially, it relies on inclusive design and ethical governance to protect human 
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dignity. “Sustainably”, it must balance short-term profits with long-term planetary 
well-being.

Theoretical: Construct hybrid frameworks (e.g., Climate-Centric Dynamic 
Capabilities) concerning the power of AI vis-a-vis climate justice.

Accelerate AI tool adoption for small and medium enterprises (SMEs) and estab-
lish explainable AI (XAI) as the standard requirement for corporate climate 
disclosures.

Social: Engaging in active partnership with marginalised communities to co-
create and co-implement AI-based responses and mandating audits for bias in cli-
mate algorithms.

Sustainable: Do not deploy AI without investing in renewable energy and adopt-
ing other standards, like ISO 14090, which address climate resilience.

Decoupling between efficiency and equity (innovation and ethics, survival and 
sustainability) implicates action taken under the Climate Crisis. Business, policy-
makers, and civil society must collaborate to ensure that AI is a force for inclusive 
climate resilience, not exclusion. Organisations committed to a sustainable, just 
planet for future generations will be the ones who succeed rather than technological 
capability, as Digital Darwinism rattles the underpinnings of corporate practices.

5 � Conclusion

It is not a distant Specter of the Climate Crisis but an objective and expanding real-
ity shaking, making the ground for global commerce. As temperatures rise, regula-
tory pressure mounts, and social expectations shift, businesses face a Darwinian 
challenge: innovate to evolve, or perish. This chapter has tried to frame Digital 
Darwinism—the convergence of artificial intelligence (AI) and organisational agil-
ity—as a survival lens for the new normal. Relying on an unprecedented combina-
tion of research data from climate science, organisational theory, and the growing 
field of technological innovation, we have derived insights into how AI-driven strat-
egies in risk assessment, supply chain resilience, and scenario planning are rewrit-
ing companies’ survival guidebook. The evolution will not be simple nor particular 
to each industry, but it will be undeniably clear: businesses must change, and AI will 
be the driving force behind that change.

5.1 � Recapitulation of the Evolutionary Imperative

Conventional approaches to risk management,   based on past data and linear pro-
jections, fall apart in the reality of climate volatility. Enter AI, whose ability to 
analyse large datasets without rules and predict nonlinear futures is revolutionary. 
Real-world case studies artfully illustrate this revolutionary promise—from the 
tsunami-predicting AI systems that are helping protect supply chains at Google, to 
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enhancing AI path-finding that makes Shell’s green transition scenarios possible. 
These tools help not just to manage risk but to create opportunity. Patagonia’s 
AI-accelerated lifecycle assessments and Tesla’s autonomous energy grids can 
show us how climate resilience plays the part of a (competitive) advantage in the 
market. However, it is not just a question of technology—it is one of culture. Instead, 
organisations should pursue dynamic capabilities via cultures of agility, experimen-
tation, and cross-disciplinary collaboration.

AI provides unlimited flexibility, but its deployment presents ethical and real-
world concerns. Theoretically, it questions valid but static paradigms such as the 
Resource-Based View,   prompting companies to move their focus from fixed stock 
of assets to dynamic, algorithmic agility. It tends to deepen inequalities, with SMEs 
and marginalised communities unable to access state-of-the-art AI tools. AI’s bias 
and opacity also endanger people in the social domain: profit comes before people, 
as seen by energy pricing algorithms that punish poorer households. Sustainably, 
AI’s carbon footprint—e.g., the mind-boggling emissions produced when training 
large models—calls for a commitment to “green AI” innovations. These challenges 
are not insurmountable but promise no easy fixes and require purposeful gover-
nance. Explainable AI (XAI), participatory design, and regulatory frameworks such 
as the EU’s AI Act (2023) may offer directions to ensure innovation moves in equi-
table directions.

5.2 � Systematic Recognition of the Importance 
of Deliberate Actions

Moving towards a net-zero economy is not a solo endeavour but a joint imperative. 
Three groups should be held most accountable:

	(a)	 Business Leaders: It is time to stop token ESG pledges and infuse AI-powered 
climate playbooks into industries’ DNA. Examples include increasing literacy, 
decentralising decision-making and tying executive comp to climate KPIs.

	(b)	 Policymakers: Offer subsidies for small and medium-sized enterprises (SMEs) 
· Challenge carbon pricing · Mandate algorithmic transparency in climate dis-
closures. The above-and-beyond efforts, like Kenya’s AI-reliant response to 
drought, shaped by consultation with local communities, offer blueprints for 
inclusive governance.

	(c)	 Civil Society: Hold companies accountable and fight for climate justice; ensure 
AI benefits the many, not the few. Movements like the Climate Justice Alliance 
highlight the need to put frontline communities at the centre of technological 
solutions.
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5.3 � The Horizon of Possibility

The Darwinian threshold is not a finish line but a portal of reinvention. Imagine a 
future of energy access democratised by AI-enabled microgrids, circular supply 
chains that design out waste, and predictive models that prepare farmers for climate 
threats such as droughts. That vision is possible,   but based on three principles:

Interdisciplinary integration: Connecting Climate Scientists, AI Engineers, and 
Business Strategists. It is embodied in tools like Microsoft’s Planetary 
Computer,   which integrates environmental data and machine learning.

Act with strategic foresight: Prioritise planetary health over short-term gains. 
This means building AI systems that respect planetary boundaries and intergenera-
tional justice, as outlined in the “safe operating space” rubric.

The fourth principle of Lawless Leaders is this: Focus on Adaptability. Build 
flexible work cultures that can turn uncertainty into a hotbed for innovation. But 
there are companies that have made radical reinvention work: Ørsted, for instance, 
which transformed from an oil major to its renewable-energy champion.

There are no winners and losers in the race against climate collapse, only col-
laborators or casualties. Digital Darwinism is not the “survival of the fittest” but the 
flourishing of the flexible. When guided thoughtfully, AI can democratise resilience, 
transforming climate risks into prospects for shared prosperity. However, technol-
ogy alone will not help. The iterative way of measuring success lies between the 
knitting together of innovative with empathy, efficiency with equity, and surviving 
with sustainability.

Whether by the new devices or those already on the market (and in our bodies), 
the dance of adaptation continues in this chapter, and, unfortunately, we are left with 
the same ultimatum we had at the beginning: adapt or perish. Adaptation tools are 
already available; urgency is high. Businesses that answer this call will not only 
gain a foothold in the net-zero economy but will leave a legacy of planetary steward-
ship. The question is not whether to evolve but how. By doing so, we can reimagine 
progress—not as the conquest of nature, but as the alignment of human invention 
with the Earth’s delicate balance.
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Global Synergy: AI’s Role in Advancing 
Climate Collaboration and International 
Agreements

Gyorgy Pal Papay and Subhankar Das

1 � Introduction

The global climate crisis, which is in order of historic systemic change (Borgia 
et  al., 2024), is one of the most significant challenges faced by the world on an 
increasing scale. As nations try to meet targets in international agreements (e.g., the 
Paris Accord), limitations of conventional economic paradigms for climate and 
industrial governance have become apparent (Das, 2020). This is where another 
technological factor comes in, AI, with its data processing, result forecasting, and 
decision-making improvement abilities, which is disrupting industries, supply 
chains, and the world’s fight against climate change (Das, 2023). This chapter looks 
at how AI is helping in the mission to become more sustainable by enabling us to 
optimise what we do and how we do it and examines how AI is radically changing 
how we work internationally together on the problem of climate change.

AI’s unparalleled capacity to monitor and evaluate global emissions is at the 
heart of this transformation. Today, marketplaces are being flooded with AI-powered 
platforms that contextualise satellite imagery, IoT sensors, and real-time data 
streams (Das et  al., 2024) to supersede existing methods of carbon footprinting, 
which tend to be fragmented, legacy, and manual. These tools generate highly gran-
ular information about emissions sources: from industrial plants to deforestation 
hotspots, enabling companies and governments to identify inefficiencies and enforce 
accountability (Das et al., 2024). Such specialisations are developed to monitor (i.e., 
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identify methane leakage in oil and gas supply chains or in the manufacturing sector 
to add forecasting for emission patterns to be created to reduce emissions (Das 
et al., 2023). Harmonisation of the sectoral legislation with the AA and global cli-
mate regimes transparency requirements is essential for these functionalities (Di 
Virgilio & Das, 2023a).

Besides monitoring, AI helps improve the precision of climate modelling, which 
is essential for designing optimal policies (Di Virgilio & Das, 2023b). While tradi-
tional models are helpful, they fail to capture the dynamic relationships that emerge 
when ecological, economic, and social factors interact (Majerova & Das, 2023a). 
Machine learning algorithms, trained on decades of climate and human data, can 
simulate scenarios with unprecedented accuracy—from the impact of switching to 
renewable energy to the cascading effects of extreme weather on supply chains. 
Such models empower policymakers with tools to ground resource allocation, pri-
oritise implementation, and assess risk in multinational initiatives (Majerova & Das, 
2023b). AI-powered forecasts could potentially inform the deployment of capital 
for resilient infrastructure in at-risk areas, even prescribe the optimal phasing of 
cross-border clean energy grids to maximise the impact of climate finance 
(S. Mondal, 2020).

However, the fate of international climate accords depends less on numbers than 
diplomacy. Artificial Intelligence also builds trust in international negotiations by 
increasing transparency and standardisation (S. Mondal et al., 2023). For instance, 
blockchain-AI hybrids are being piloted to validate nations’ progress towards emis-
sions reductions, helping curb arguments over self-reported data (S. Mondal et al., 
2024). Natural language processing tools analyse decades of climate agreements to 
identify patterns in which negotiation points deadlock, and coverage of the tools 
will give diplomats actionable insights to bridge divides (S.  R. Mondal & Das, 
2023a). This is especially important regarding the asymmetry between wealthy 
industrialised countries, historically responsible for high emissions, and developing 
countries, where climate impacts are most acute, and climate governance must also 
be reflective and enforceable (S. R. Mondal & Das, 2023b).

However, using AI for climate action comes with ethical and practical chal-
lenges. The concentration of AI expertise in tech-forward nations risks increasing 
global inequities, and training data biases could bias climate solutions in favour of 
Global North priorities. On top of that, the energy needs of A.I. infrastructure create 
a paradox: Can the technology’s climate advantages outweigh its carbon footprint? 
In this chapter, we look at these dilemmas and recommend the development of 
frameworks that prize inclusivity, algorithmic accountability, and sustainable devel-
opment for AI.

Through a combination of theoretical analysis and practical case studies—from 
AI-optimised circular economies in Europe to innovative agriculture initiatives in 
sub-Saharan Africa—this chapter demonstrates how intelligent systems transform 
industries and supply chains into boats of sustainability (S.  R. Mondal & Das, 
2023c). The vast potential of AI is not in human replacement, it contends, but 
instead human augmentation, to create a symbiotic relationship between technology 
and policy to expedite the low-carbon transition (S. R. Mondal et al., 2022). While 
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the clock is ticking on climate deadlines, whether AI combined with international 
cooperation can hit the slim opening towards a sustainable future may define 
humanity (S. R. Mondal et al., 2023).

In the following pages, we unpack AI’s complex role in this transformation—its 
promise and a sober assessment of its limitations. This is where it all begins: at the 
juncture of innovation, governance, and the imperative need for planetary resilience.

2 � Literature Review

The leverage of artificial intelligence (AI) technology to support sustainability 
efforts has become one of the veering subjects of interdisciplinary science 
(S. Mondal & Sahoo, 2019), squaring climate science, data analytics (Nadanyiova 
& Das, 2020), ethics and international governance (Tandon & Das, 2023). Scholars 
have increasingly focused on the factors that might enable—or constrain—AI’s 
ability to optimise industrial and supply chains for environmental sustainability 
(Vrana & Das, 2023a), especially within the global climate action agenda (Vrana & 
Das, 2023b). This review highlights essential topics in the recent literature, struc-
tured along four interconnected dimensions: (1) AI-based monitoring and emissions 
tracking, (2) climate modelling and predictive analytics, (3) international gover-
nance and diplomacy, and (4) ethical and operational hurdles (Yegen & Das, 2023).

2.1 � AI, Monitoring Emissions Coming from Tracking

An increasing body of research highlights the transformative potential of AI for 
emissions monitoring. Based on self-reported data and periodic audits, traditional 
approaches are often accused of being slow, imprecise, and fragmented (Gorber & 
Tremblay, 2016). AI systems use satellite imagery, the Internet of Things sensors, 
and machine learning to give real-time, granular insights into emissions sources. 
Yang (2022) shows how Artificial Intelligence is employed to detect methane leaks 
from oil and gas infrastructure with 90% accuracy; and algorithms analysing satel-
lite data on deforestation patterns have helped hold supply chains associated with 
tropical logging more accountable (De Wilde, 2023). These capabilities are consis-
tent with the Enhanced Transparency Framework of the Paris Agreement, which 
requires accurate, verifiable emissions data. Similarly, scholars such as Cowls et al. 
(2021) caution that the uneven spread of AI tools could deepen existing data 
inequalities between rich and poor countries, complicating efforts to enforce com-
pliance globally.
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2.2 � Climate Modelling and Predictive Analysis

Deluge modelling, fuelled by AI, has gained attention for helping to fine-tune cli-
mate predictions. While this serves as a reasonable basis, traditional models face the 
limits of computation and the nature of nonlinear climate systems (Camps-Valls 
et al., 2025). Machine learning (ML) techniques such as neural networks enhance 
predictive power by integrating multiple datasets—from ocean temps to socioeco-
nomic trends—to present a hyper-local risk profile. ML-based flood prediction sys-
tems have decreased the disaster response time by 40% in South Asia (Liu et al., 
2024). AI can further simulate such “what-if” scenarios, which can help decision-
makers assess the long-term implications of decarbonisation options such as circu-
lar economies of scale (Hansen, 2023). Yet, as Zhai et al. (2024) warn, naive reliance 
on AI models—what is underneath them when regarded as omniscient—creates the 
risk of misinterpreting probabilistic outputs, resulting in maladaptive policies.

2.3 � International Affairs, Governance and Diplomacy

The literature treats AI as a double-edged sword for international climate coopera-
tion, facilitating and hindering it. Harnessing AI capabilities and combining block-
chain with advanced analytics has enabled the provision of hybrid technologies as 
targeted solutions to improve emissions collection transparency and decrease scep-
ticism around multilateral mechanisms (Ressi et  al., 2024). Decades of climate 
negotiation transcripts have also been mined using natural language processing 
(NLP) tools to create linguistic profiles that encourage or discourage consensus 
(Supriyono et al., 2024). However, Biermann et al. (2022) contend that geopolitical 
tensions threaten AI’s governance potential, as data sovereignty and intellectual 
property disputes inhibit knowledge transfer. Moreover, countries that might want 
the technology do not have the infrastructure to leverage AI for climate diplomacy, 
perpetuating power asymmetries at the COP.

2.4 � Ethical and Operational Obstacles

Training even medium-large AI models leaves a carbon footprint—ballpark tens of 
transatlantic flights (Van Wynsberghe, 2021)—leading to a counterintuitive chal-
lenge: Can the potential climate benefits of using AI cases exceed the environmental 
cost of the model itself? Researchers advocate for “green AI” principles that should 
prioritise algorithms that a) are powered by renewable energy and b) are executed in 
data centres powered by renewable energy (Dhar, 2020). Moreover, AI systems with 
biased products pose equity issues because training data  favouring Global North 
contexts may leave vulnerable regions out of climate solutions (Hanna et al., 2024). 
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Furthermore, the concentration of AI knowledge among tech giants and wealthier 
countries may privatise climate governance at the cost of, and could marginalise, 
public institutions. Jobin et al. (2019) demonstrated the need for developing ethical 
guidelines surrounding the implementation of AI that is informed by and sensitive 
to inclusion, accountability, and participatory design concerns.

2.5 � Research Gaps

Although there is literature on its transformative potential, there are also significant 
gaps. Few studies have empirically examined AI’s overall effect on emissions reduc-
tion across sectors, and even fewer have examined the socio-political dynamics of 
its deployment within Global South contexts. The long-term ethical consequences 
of outsourcing climate governance to secretive algorithms have received little atten-
tion. Future research must address these gaps so that AI-enabled sustainability ini-
tiatives can be equitable, transparent, and aligned with planetary boundaries.

Such positive impacts will need to be balanced by equivalent negative implica-
tions in other areas, further underscoring that AI’s role in industrial and supply 
chain optimisation is neither inherently virtuous nor neutral; its shape will emerge 
from and be governed by technical capabilities, governance structures, and ethical 
choices of these governance systems. As climate deadlines approach, awareness of 
these factors is essential to leverage AI as a force for fair, systemic change.

3 � Proposed Practical Framework for Applying AI 
for Sustainable Transformation of Industries 
and Supply Chains

To leverage AI’s capability to drive optimisation around sustainability in industries 
and supply chains, stakeholders need to take a systematic, cross-disciplinary 
approach to tackle technical, governance, and ethical challenges. Guided by the 
literature review, this framework lays out actionable steps in four interrelated areas: 
monitoring and emissions tracking, climate modelling, international governance, 
and ethical deployment.

3.1 � Artificial Intelligence Is Used to Monitor 
and Track Emissions

Aim: Facilitate real-time, precise emissions reporting to hold the accountable and 
facilitate decarbonisation.
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Implementation

	(a)	 Deploy AI-Integrated Sensor Networks: Install IoT sensors and satellite-linked 
AI systems to track emissions, energy use, and waste generation at industrial 
sites, logistics hubs, and agricultural systems. For instance, methane detection 
algorithms (e.g., those tested by the Environmental Defense Fund) are scalable 
across the oil and gas supply chains.

	(b)	 Create global data-sharing platforms: Open-access emissions data repositories 
standardised across country borders and industries. The UN’s Climate Trace 
initiative, which employs AI to merge satellite and sensor data, provides a trans-
parent, collaborative monitoring model.

	(c)	 Ensure data equity: Work with developing countries to stimulate their capacity 
to adopt AI tools, including training programs and subsidisation of access to 
monitoring technologies.

Key Tools

	(a)	 Anomalous behaviours prediction: ML models (e.g., leakage prediction 
models).

	(b)	 Immutable, Auditable Emissions Records Using Blockchain-AI Hybrids.

3.2 � Big Data: Climate Modelling and Predictive Analytics

Aim: Improve decision-making using hyper-localised climate risk assessments and 
scenario simulations.

Implementation

	(a)	 Create hybrid AI-climate models: Augment standard climate models with 
machine learning to achieve better precision in regional predictions (e.g., flood-
ing potential, harvested products). For example, the European Centre for 
Medium-Range Weather Forecasts uses AI to improve hurricane path 
projections.

	(b)	 Design scenario-planning dashboards: Develop AI-enabled platforms that 
enable policymakers to simulate the effects of decarbonisation proposals (e.g., 
carbon pricing, renewables transition) on industries and supply chains. Tools 
such as ClimateAi’s agricultural risk platform show this promise.

	(c)	 Use regional AI training data: Work with local universities and institutions so 
that AI models can reflect local ecological and socioeconomic conditions rather 
than being one-size-fits-all.

Key Tools

	(a)	 Dynamic Risk Modelling using Neural Networks.
	(b)	 Digital twins of supply chains are used to model disruptions and resilience 

strategies.
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	(c)	 International Governance and Diplomacy.

Aim: Enable trustful and equitable climate negotiations worldwide, leveraging 
AI-driven transparency.

Implementation

	(a)	 Ensure AI verification systems are adopted: Use blockchain-AI platforms to 
independently verify reports of nations’ emissions to decrease the dependence 
on self-disclosed data under the Paris Agreement. The World Bank’s Climate 
Warehouse pilot provides an example of this.

	(b)	 NLP for good: Using natural language processing (NLP) tools, such as GPT-3, 
analyse transcripts from past climate negotiations to identify the linguistic traits 
that prevent talks from moving forward. This can help diplomats create more 
effective communication strategies.

	(c)	 Build inclusive AI Governance Coalitions: Create multilateral institutions (e.g., 
a UN-led AI-Climate Task Force) to govern data-sharing, IP, and tech transfer 
so that developing nations have equal access to AI capabilities.

Key Tools

	(a)	 A tamper-proof compliance tracking system–Blockchain.
	(b)	 NLP algorithms (like BERT) for decoding negotiation dynamics.

3.3 � Fair and Bias-Free Application of AI

Aim: Minimise AI’s environmental and social risks while maximising its benefits 
for the climate.

Implementation

	(a)	 Embrace “Green AI” principles: Favour algorithms that require less power or 
operate on renewable data centres. One example is Google’s “4M” model, 
which optimises data, model architecture and hardware, and reduces AI train-
ing energy.

	(b)	 Embed equity in AI design: The law should require developers to use diverse 
training datasets and participatory design processes involving marginalised 
community members. The AI for Climate Resilience initiative in Kenya, co-
developed with localised farmers, epitomises this principle.

	(c)	 Audit AI systems for bias and carbon: Require third-party audits of the lifecycle 
emissions and fairness of AI tools, such as Europe’s proposed AI Act.

Key Tools

	(a)	 AI infrastructure carbon accounting frameworks (e.g., ML CO2 Impact 
Calculator).

	(b)	 Civil Society, Academia and Global South Ethics Review Boards.
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Implementation Steps Across the Board

	(a)	 Pilot AI solutions in high-impact sectors: Test frameworks in heavy carbon-
emitting industries (e.g. cement, shipping) and scale successes.

	(b)	 Establish public–private partnerships: Collaborate to harness funding and 
expertise, as in the AI for the Earth Alliance case, which connects Microsoft 
with NGOs and governments.

	(c)	 Feedback loops—Iterate: Amid constant input from stakeholders, AI systems 
must look beyond themselves to refine continuously, ensuring AI-based tools 
reflect growing ambitions on climate progress and shifts in the underlying tech-
nological landscape.

This model is not uniquely the solution to our problem, but a strong encourage-
ment to systemic usage conditional on equal access, strong governance, and ethical 
prudence. A new approach to industry and supply chains, one that ties technical 
innovation to international cooperation and justice, can transform them  from 
carbon-intensive silos to interdependent, sustainable ecosystems. Success depends 
on stakeholders’ willingness to share data, redistribute resources, and prioritise 
long-term planetary health over short-term payoff. This challenge is as much politi-
cal as it is technological. The time for action is slim, but if used wisely, AI can 
provide a route to reconciling ambition with reality in the climate crisis. Figure 1 
represents an AI-driven sustainability framework.

Fig. 1  AI-driven sustainability framework for sustainability (Source: Authors’ conception)
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4 � Implications

AI-aided integration into industrial and supply-chain setups for sustainability, the 
concepts hold extensive significance at theoretical, applied, social, and sustainable 
levels. Such implications highlight opportunities for, yet also caution to, policymak-
ers, technologists, and global communities alike.

4.1 � Theoretical Implications

Theoretical frameworks for climate governance and technological innovation 
should adapt to incorporate AI’s disruptive potential. Traditional models of interna-
tional cooperation—based on state-centric diplomacy and fixed emissions invento-
ries—are increasingly ill-suited to a world characterised by real-time data and 
algorithmic decision-making. Inclusive of nature at cost price, AI creates a new 
paradigm of complex systems theory upon which climate action can be modelled as 
a dynamic interplay between predictive analytics, decentralised networks, and 
adaptive governance. For example, the way that AI can represent nonlinear changes 
to climate systems means that our standard cost–benefit analyses will no longer be 
sufficient, giving way to the need for theories based on resilience rather than 
efficiency.

AI’s entanglement in climate governance poses questions of agency and account-
ability that go to the heart of theoretical ethics. Who will be at fault for systemic 
biases or errors, if algorithms assist in resource allocation or checking compliance 
with climate treaties? Scholars should wrestle with AI’s “black box” ness head-on, 
reconciling principles of democratic transparency with theories of global justice 
that transcend the nation-state and accommodate the condition of algorithmic gov-
ernance. Lastly, AI convergence areas, such as incorporating behavioural econom-
ics and nudging industries towards circular practices, will require multidisciplinary 
crossovers that bridge the technical and social sciences.

4.2 � Practical Implications

The  engagement of AI is also driven by strong infrastructure, intersectoral collabo-
ration, and responsive policymaking. As industries explore the AI hype cycle further 
into the enterprise, industry needs to be ready, including AI-ready ecosystems that 
span IoT sensor networks, interoperable data platforms, and skilled workforces. For 
instance, supply chains using AI for emissions monitoring will need standardised 
data formats and cybersecurity protocols that minimise manipulation. Policymakers, 
meanwhile, are under pressure to revise regulatory frameworks—like extending the 
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Paris Agreement’s transparency mechanisms to include AI-verified emissions 
reports—while balancing innovation against oversight.

A key test is taking pilot projects to global systems. Although some initiatives, 
such as Climate TRACE (a global AI emissions tracker), are feasible, deploying 
similar models in data-poor regions would require targeted investments in digital 
infrastructure. The energy requirements of AI infrastructure (e.g., data centres) sim-
ilarly require parallel scaling of renewable energy grids to avert counterproductive 
carbon footprints. This highlights the importance of risk and resource sharing 
through public–private partnerships, like the EU’s new Digital Green Coalition.

4.3 � Social Implications

Socially, AI risks making inequities worse if it is used without intentional protec-
tions in place. AI can democratise access to climate insights (e.g., smallholder farm-
ers using predictive tools to adapt to droughts), but it also centralises power in 
entities that control data and algorithms. Digital divides between nations (and 
between communities) could also gel further, as the Global South has relatively 
little to say  when it comes to building the datasets used to train AI systems, as well 
as teaching the computational resources required to develop and train AI systems, 
measured in terms of GPUs, TPUs, and so on. These scenarios codify an “aristoc-
racy of climate tech,” where sustainability solutions accrue to the wealthiest compa-
nies or countries.

Ethical questions around labour displacement further complicate the social 
impact of AI.  Logistics or manufacturing automation could sharpen emissions 
reductions and eliminate jobs in at-risk areas. In contrast,  tech-optimist AI-enabled 
reskilling programmes, like India’s AI for Sustainable Development, offer examples 
where decarbonisation can be aligned with equitable growth. The social acceptance 
of AI also has to do with cultural trust: communities themselves will revolt against 
AI-driven climate change initiatives if they appear technocratic or extractive, requir-
ing that participatory design processes emphasising local knowledge be a given.

4.4 � Sustainable Implications

AI has paradoxical implications for sustainability. Although it optimises energy use, 
reduces waste, and accelerates moves to renewables, its environmental costs and the 
carbon footprint of training large models, for instance, warrant scrutiny. Turning 
AI  into a net-positive force will require the sector embracing green AI principles 
like energy-efficient algorithms (e.g. Google’s “4M” model), renewable-powered 
datacentres, and lifecycle carbon audits. This is where the ML CO2 Impact 
Calculator shines, and why we need tools like this to help align AI development 
with planetary boundaries.
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Ultimately, the headroom for AI will depend on its ability to sustain intergenera-
tional equity. So, climate models predicting a sea-level rise in 2100 must inform the 
infrastructure policies we make today, needing A.I. systems to prioritise long-term 
resilience over short-term profit. But  that depends on governance structures that 
would require foresight about the deployment of AI, such as the EU’s proposed AI 
Act, which stipulates sustainability impact assessments.

�Synthesis and Future Directions

These implications combine to emphasise that AI is an essential ingredient in more 
systemic transformation, far from a catalyst operating in a vacuum. It asks theoreti-
cally for an innovation of governance through infrastructural and regulatory agility 
in practice, equity-centred design in social terms, sustainability, and a commitment 
to green tech tenets. The path forward hinges on:

	(a)	 We bridged through collaboration, AI and climate (ethics).
	(b)	 Global agreements on how to share access to AI resources and bridge digital 

divides.
	(c)	 Adaptive governance that keeps up with AI’s advancing powers and perils.

Ultimately, AI’s use in sustainability is a double-edged sword—it provides 
unmatched mechanisms for stewardship of the planet while being an area that must 
be carefully monitored for its perils. Whether this technology will bolster resilience 
or undermine it will depend on whether we humans manage to learn to wield it not 
as masters but as co-workers in that vital work.

5 � Conclusion

The climate crisis is demanding a paradigm shift—a radical rethinking of the rights, 
responsibilities, and systems that we put in place that govern how humanity pro-
duces and consumes. As this chapter has argued, artificial intelligence (AI) is not 
just a tool but a transformative power that can reshape industries, supply chains, and 
global climate cooperation. Across a range of theoretical models, practical applica-
tions, social dynamics, and sustainability goals, a coherent tale emerges: AI is a 
potential fucking boon to piercing through a low-carbon migration, but the  huge 
opportunity stands to land with a dull thud if it’s not applied with intent, ethics, and 
democracy in mind. The stakes are nothing less than the highest they could be. The 
potential of AI to close the gap between climate ambition and climate action is more 
urgent and needed than ever when the window of opportunity to keep the global 
temperature rise below 1.5 °C is slamming shut.

Processing complexity at scale has been AI’s value proposition from the start. 
Constrained by piecemeal data and reporting from the past combined with static 
models for solution implementation, traditional climate solutions are ill-equipped to 
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address decarbonisation’s nonlinear, interdependent problems. AI pulls the rug from 
under that status quo by enabling near-real-time emissions monitoring via satellite 
networks and IoT sensors, laying the groundwork for better models for climate 
prediction with machine-learning-enhanced models, and unlocking transparency in 
global governance through blockchain-AI hybrids. For industries and supply chains, 
which account for more than 60 percent of total global emissions, this could mean 
employing AI-driven optimisation to make economic growth operate within plane-
tary boundaries. Welcome to the age of AI sustainability backed by processes and 
data that eliminate guesswork in favour of target matrices for carbon-negative—
think smart grids dispatching renewables loads and/or minimising stranded assets, 
and circular supply chains that eliminate material waste.

As this chapter demonstrates (via case studies and theoretical analysis), the 
effects of AI go well beyond technical efficiency alone. It turns the architecture of 
international climate diplomacy on its head. Standardised, verifiable AI data also 
helps heal the distrust long attacking multilateral equal accords. Natural language-
processing applications explain the intricacies of deadlocks in negotiations; predic-
tive analytical tools help to devise the fair distribution of resources in climate 
finance. Such innovations are key to the bargain that wealthy countries made with 
vulnerable regions—that the spoils of industrialisation were not a curse and that 
climate action would not further entrench already profound historical injustice.

Yet, the potential for AI’s good also comes with greater risk. The irony is the 
environmental cost of the tech, from data centres that gobble up power to models 
that need carbon-heavy training. Most importantly, a “green AI” framework that 
uses energy-efficient algorithms and infrastructure powered with renewable energy 
will ensure that a cure isn’t worse than the disease. It is ethically opposed to AI, as 
its development is still in the tech-first world of the Global North, threatening and 
taking advantage of the imbalances of power. Biased data sets can yield solutions 
suited to wealthier countries and ignore the needs of vulnerable climate-affected 
communities, from Pacific islanders displaced by flooding from its rising seas to 
farmers in sub-Saharan Africa grappling with desertification. Secondly, the move 
towards corporatisation of AI toolmaking contributes to the marginalisation of pub-
lic authorities, undermining the democratic accountability of the climate gover-
nance ecosystem.

On the social front, AI deployment entails trade-offs between automation and 
equity. If green logistics were to create efficiencies and decrease emissions, it could 
lead to even more layoffs in the manufacturing or transportation sector. Similarly, 
AI-empowered reskilling projects that push workers up the ladder towards green 
jobs via digital platforms are many examples of how technology can align decar-
bonisation and social inclusion. How do we ensure AI acts as a bridge, not a wall, to 
transitions?

However, as this paper illustrates via case studies and theoretical analysis, the 
effects of AI extend beyond mere technical efficiency. Its effects will upend the 
architecture of international climate diplomacy. AI builds up the trust that long ago 
shattered multilateral agreements, by transmitting verifiable, standardised informa-
tion. Applications in natural language processing unpack the complexities of 
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deadlocks in negotiating; predictive analytics help assess how climate finance can 
be equitably distributed. These innovations are integral to wealthy countries’ prom-
ise to climate-vulnerable regions that the fruits of industrialisation are not one of its 
curses. That climate action will not further entrench existing profound historical 
injustice.

Yet, the promise of A.I. also carries risks of significant damage. The environmen-
tal costs of the tech itself—from data centres that consume energy to models trained 
with carbon-consuming methods—are ironic. Notably, a “green AI” framework pri-
oritising energy-efficient algorithms and infrastructure supported by renewable 
energy will guarantee that the cure isn’t worse than the disease. Ethically, if AI is 
still in the tech-first world of the Global North, there is a potential for power imbal-
ances, risks, and opportunities. Such biased datasets might also result in solutions 
oriented towards richer countries while ignoring the needs of vulnerable climate-
affected communities, such as Pacific islanders displaced by rising sea levels caused 
by flooding or farming communities in sub-Saharan Africa facing desertification. 
Secondly, the corporatisation of AI toolmaking incentivises the sidelining of public 
authorities, eroding democratic accountability in the climate governance ecosystem.

On the social side, the deployment of artificial intelligence represents trade-offs 
between automation and equity. Although advancing green logistics can spark effi-
ciencies and lower emissions, it may also further the trend towards layoffs in the 
manufacturing or transportation industries. Equally, AI-enabled reskilling initia-
tives, such as those that move workers along vertical pathways to green jobs through 
digital platforms, are many ways technology can align decarbonisation and social 
inclusion. The AI industry should comply with net-zero commitments by requiring 
algorithm carbon audits, encouraging green data centres, and funding energy-saving 
computing research. Universities and corporations could collaborate to cre-
ate  “Green AI” certifications, similar to LEED ratings for buildings.

The climate crisis is undoubtedly the ultimate test of human ingenuity and soli-
darity. AI cannot abrogate political will, and computers cannot induce ethical cour-
age. Its value lies in its capacity to augment human agency by allowing policymakers 
to generate better ways and providing activists with impenetrable facts and indus-
tries to reconcile profit with planetary health. But the reality is reliant on a critical 
revision of progress. GDP no longer signifies progress; resilience, equity, and eco-
logical regeneration form the new paradigm. AI provides a mirror and a compass at 
a time when countries meet at COP summits, and business gurus pledge net-zero 
goals. It reflects human ability and propensity. On the other hand, the compass only 
directs towards a future where technology retrieves its function as a great equaliser: 
A force that provides a voice to the disadvantaged, reallocates resources, and 
restores the balance in the delicate correlation of all life. Finally, the union of AI and 
climate action is not a technological eventuality. Instead, because agreement deter-
mines how it is governed and used. Governed with wisdom and humility, and used 
wisely? And justice, AI might become a torch of expectation, offering sea lights as 
humanity travels through the storm. The possibility is here, but the eternal problem 
demands an answer.
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